Commit 4934f93d authored by antirez's avatar antirez
Browse files

Jemalloc updated to 3.0.0.

Full changelog here:

http://www.canonware.com/cgi-bin/gitweb.cgi?p=jemalloc.git;a=blob_plain;f=ChangeLog;hb=master

Notable improvements from the point of view of Redis:

1) Bugfixing.
2) Support for Valgrind.
3) Support for OSX Lion, FreeBSD.
parent 14beba78
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
/*
* Size and alignment of memory chunks that are allocated by the OS's virtual
* memory system.
*/
#define LG_CHUNK_DEFAULT 22
/* Return the chunk address for allocation address a. */
#define CHUNK_ADDR2BASE(a) \
((void *)((uintptr_t)(a) & ~chunksize_mask))
/* Return the chunk offset of address a. */
#define CHUNK_ADDR2OFFSET(a) \
((size_t)((uintptr_t)(a) & chunksize_mask))
/* Return the smallest chunk multiple that is >= s. */
#define CHUNK_CEILING(s) \
(((s) + chunksize_mask) & ~chunksize_mask)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern size_t opt_lg_chunk;
#ifdef JEMALLOC_SWAP
extern bool opt_overcommit;
#endif
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
/* Protects stats_chunks; currently not used for any other purpose. */
extern malloc_mutex_t chunks_mtx;
/* Chunk statistics. */
extern chunk_stats_t stats_chunks;
#endif
#ifdef JEMALLOC_IVSALLOC
extern rtree_t *chunks_rtree;
#endif
extern size_t chunksize;
extern size_t chunksize_mask; /* (chunksize - 1). */
extern size_t chunk_npages;
extern size_t map_bias; /* Number of arena chunk header pages. */
extern size_t arena_maxclass; /* Max size class for arenas. */
void *chunk_alloc(size_t size, bool base, bool *zero);
void chunk_dealloc(void *chunk, size_t size, bool unmap);
bool chunk_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#include "jemalloc/internal/chunk_swap.h"
#include "jemalloc/internal/chunk_dss.h"
#include "jemalloc/internal/chunk_mmap.h"
#ifdef JEMALLOC_DSS
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
/*
* Protects sbrk() calls. This avoids malloc races among threads, though it
* does not protect against races with threads that call sbrk() directly.
*/
extern malloc_mutex_t dss_mtx;
void *chunk_alloc_dss(size_t size, bool *zero);
bool chunk_in_dss(void *chunk);
bool chunk_dealloc_dss(void *chunk, size_t size);
bool chunk_dss_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_DSS */
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
void *chunk_alloc_mmap(size_t size);
void *chunk_alloc_mmap_noreserve(size_t size);
void chunk_dealloc_mmap(void *chunk, size_t size);
bool chunk_mmap_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ckh_s ckh_t;
typedef struct ckhc_s ckhc_t;
/* Typedefs to allow easy function pointer passing. */
typedef void ckh_hash_t (const void *, unsigned, size_t *, size_t *);
typedef bool ckh_keycomp_t (const void *, const void *);
/* Maintain counters used to get an idea of performance. */
/* #define CKH_COUNT */
/* Print counter values in ckh_delete() (requires CKH_COUNT). */
/* #define CKH_VERBOSE */
/*
* There are 2^LG_CKH_BUCKET_CELLS cells in each hash table bucket. Try to fit
* one bucket per L1 cache line.
*/
#define LG_CKH_BUCKET_CELLS (LG_CACHELINE - LG_SIZEOF_PTR - 1)
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Hash table cell. */
struct ckhc_s {
const void *key;
const void *data;
};
struct ckh_s {
#ifdef JEMALLOC_DEBUG
#define CKH_MAGIC 0x3af2489d
uint32_t magic;
#endif
#ifdef CKH_COUNT
/* Counters used to get an idea of performance. */
uint64_t ngrows;
uint64_t nshrinks;
uint64_t nshrinkfails;
uint64_t ninserts;
uint64_t nrelocs;
#endif
/* Used for pseudo-random number generation. */
#define CKH_A 1103515241
#define CKH_C 12347
uint32_t prn_state;
/* Total number of items. */
size_t count;
/*
* Minimum and current number of hash table buckets. There are
* 2^LG_CKH_BUCKET_CELLS cells per bucket.
*/
unsigned lg_minbuckets;
unsigned lg_curbuckets;
/* Hash and comparison functions. */
ckh_hash_t *hash;
ckh_keycomp_t *keycomp;
/* Hash table with 2^lg_curbuckets buckets. */
ckhc_t *tab;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
bool ckh_new(ckh_t *ckh, size_t minitems, ckh_hash_t *hash,
ckh_keycomp_t *keycomp);
void ckh_delete(ckh_t *ckh);
size_t ckh_count(ckh_t *ckh);
bool ckh_iter(ckh_t *ckh, size_t *tabind, void **key, void **data);
bool ckh_insert(ckh_t *ckh, const void *key, const void *data);
bool ckh_remove(ckh_t *ckh, const void *searchkey, void **key,
void **data);
bool ckh_search(ckh_t *ckh, const void *seachkey, void **key, void **data);
void ckh_string_hash(const void *key, unsigned minbits, size_t *hash1,
size_t *hash2);
bool ckh_string_keycomp(const void *k1, const void *k2);
void ckh_pointer_hash(const void *key, unsigned minbits, size_t *hash1,
size_t *hash2);
bool ckh_pointer_keycomp(const void *k1, const void *k2);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct ctl_node_s ctl_node_t;
typedef struct ctl_arena_stats_s ctl_arena_stats_t;
typedef struct ctl_stats_s ctl_stats_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct ctl_node_s {
bool named;
union {
struct {
const char *name;
/* If (nchildren == 0), this is a terminal node. */
unsigned nchildren;
const ctl_node_t *children;
} named;
struct {
const ctl_node_t *(*index)(const size_t *, size_t,
size_t);
} indexed;
} u;
int (*ctl)(const size_t *, size_t, void *, size_t *, void *,
size_t);
};
struct ctl_arena_stats_s {
bool initialized;
unsigned nthreads;
size_t pactive;
size_t pdirty;
#ifdef JEMALLOC_STATS
arena_stats_t astats;
/* Aggregate stats for small size classes, based on bin stats. */
size_t allocated_small;
uint64_t nmalloc_small;
uint64_t ndalloc_small;
uint64_t nrequests_small;
malloc_bin_stats_t *bstats; /* nbins elements. */
malloc_large_stats_t *lstats; /* nlclasses elements. */
#endif
};
struct ctl_stats_s {
#ifdef JEMALLOC_STATS
size_t allocated;
size_t active;
size_t mapped;
struct {
size_t current; /* stats_chunks.curchunks */
uint64_t total; /* stats_chunks.nchunks */
size_t high; /* stats_chunks.highchunks */
} chunks;
struct {
size_t allocated; /* huge_allocated */
uint64_t nmalloc; /* huge_nmalloc */
uint64_t ndalloc; /* huge_ndalloc */
} huge;
#endif
ctl_arena_stats_t *arenas; /* (narenas + 1) elements. */
#ifdef JEMALLOC_SWAP
size_t swap_avail;
#endif
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
int ctl_byname(const char *name, void *oldp, size_t *oldlenp, void *newp,
size_t newlen);
int ctl_nametomib(const char *name, size_t *mibp, size_t *miblenp);
int ctl_bymib(const size_t *mib, size_t miblen, void *oldp, size_t *oldlenp,
void *newp, size_t newlen);
bool ctl_boot(void);
#define xmallctl(name, oldp, oldlenp, newp, newlen) do { \
if (JEMALLOC_P(mallctl)(name, oldp, oldlenp, newp, newlen) \
!= 0) { \
malloc_write("<jemalloc>: Failure in xmallctl(\""); \
malloc_write(name); \
malloc_write("\", ...)\n"); \
abort(); \
} \
} while (0)
#define xmallctlnametomib(name, mibp, miblenp) do { \
if (JEMALLOC_P(mallctlnametomib)(name, mibp, miblenp) != 0) { \
malloc_write( \
"<jemalloc>: Failure in xmallctlnametomib(\""); \
malloc_write(name); \
malloc_write("\", ...)\n"); \
abort(); \
} \
} while (0)
#define xmallctlbymib(mib, miblen, oldp, oldlenp, newp, newlen) do { \
if (JEMALLOC_P(mallctlbymib)(mib, miblen, oldp, oldlenp, newp, \
newlen) != 0) { \
malloc_write( \
"<jemalloc>: Failure in xmallctlbymib()\n"); \
abort(); \
} \
} while (0)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct extent_node_s extent_node_t;
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
/* Tree of extents. */
struct extent_node_s {
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
/* Linkage for the size/address-ordered tree. */
rb_node(extent_node_t) link_szad;
#endif
/* Linkage for the address-ordered tree. */
rb_node(extent_node_t) link_ad;
#ifdef JEMALLOC_PROF
/* Profile counters, used for huge objects. */
prof_ctx_t *prof_ctx;
#endif
/* Pointer to the extent that this tree node is responsible for. */
void *addr;
/* Total region size. */
size_t size;
};
typedef rb_tree(extent_node_t) extent_tree_t;
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#if (defined(JEMALLOC_SWAP) || defined(JEMALLOC_DSS))
rb_proto(, extent_tree_szad_, extent_tree_t, extent_node_t)
#endif
rb_proto(, extent_tree_ad_, extent_tree_t, extent_node_t)
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
uint64_t hash(const void *key, size_t len, uint64_t seed);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_HASH_C_))
/*
* The following hash function is based on MurmurHash64A(), placed into the
* public domain by Austin Appleby. See http://murmurhash.googlepages.com/ for
* details.
*/
JEMALLOC_INLINE uint64_t
hash(const void *key, size_t len, uint64_t seed)
{
const uint64_t m = 0xc6a4a7935bd1e995LLU;
const int r = 47;
uint64_t h = seed ^ (len * m);
const uint64_t *data = (const uint64_t *)key;
const uint64_t *end = data + (len/8);
const unsigned char *data2;
assert(((uintptr_t)key & 0x7) == 0);
while(data != end) {
uint64_t k = *data++;
k *= m;
k ^= k >> r;
k *= m;
h ^= k;
h *= m;
}
data2 = (const unsigned char *)data;
switch(len & 7) {
case 7: h ^= ((uint64_t)(data2[6])) << 48;
case 6: h ^= ((uint64_t)(data2[5])) << 40;
case 5: h ^= ((uint64_t)(data2[4])) << 32;
case 4: h ^= ((uint64_t)(data2[3])) << 24;
case 3: h ^= ((uint64_t)(data2[2])) << 16;
case 2: h ^= ((uint64_t)(data2[1])) << 8;
case 1: h ^= ((uint64_t)(data2[0]));
h *= m;
}
h ^= h >> r;
h *= m;
h ^= h >> r;
return (h);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_STATS
/* Huge allocation statistics. */
extern uint64_t huge_nmalloc;
extern uint64_t huge_ndalloc;
extern size_t huge_allocated;
#endif
/* Protects chunk-related data structures. */
extern malloc_mutex_t huge_mtx;
void *huge_malloc(size_t size, bool zero);
void *huge_palloc(size_t size, size_t alignment, bool zero);
void *huge_ralloc_no_move(void *ptr, size_t oldsize, size_t size,
size_t extra);
void *huge_ralloc(void *ptr, size_t oldsize, size_t size, size_t extra,
size_t alignment, bool zero);
void huge_dalloc(void *ptr, bool unmap);
size_t huge_salloc(const void *ptr);
#ifdef JEMALLOC_PROF
prof_ctx_t *huge_prof_ctx_get(const void *ptr);
void huge_prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
#endif
bool huge_boot(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#include <sys/mman.h>
#include <sys/param.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/uio.h>
#include <errno.h>
#include <limits.h>
#ifndef SIZE_T_MAX
# define SIZE_T_MAX SIZE_MAX
#endif
#include <pthread.h>
#include <sched.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <stddef.h>
#ifndef offsetof
# define offsetof(type, member) ((size_t)&(((type *)NULL)->member))
#endif
#include <inttypes.h>
#include <string.h>
#include <strings.h>
#include <ctype.h>
#include <unistd.h>
#include <fcntl.h>
#include <pthread.h>
#include <math.h>
#define JEMALLOC_MANGLE
#include "../jemalloc@install_suffix@.h"
#include "jemalloc/internal/private_namespace.h"
#if (defined(JEMALLOC_OSATOMIC) || defined(JEMALLOC_OSSPIN))
#include <libkern/OSAtomic.h>
#endif
#ifdef JEMALLOC_ZONE
#include <mach/mach_error.h>
#include <mach/mach_init.h>
#include <mach/vm_map.h>
#include <malloc/malloc.h>
#endif
#ifdef JEMALLOC_LAZY_LOCK
#include <dlfcn.h>
#endif
#define RB_COMPACT
#include "jemalloc/internal/rb.h"
#include "jemalloc/internal/qr.h"
#include "jemalloc/internal/ql.h"
extern void (*JEMALLOC_P(malloc_message))(void *wcbopaque, const char *s);
/*
* Define a custom assert() in order to reduce the chances of deadlock during
* assertion failure.
*/
#ifndef assert
# ifdef JEMALLOC_DEBUG
# define assert(e) do { \
if (!(e)) { \
char line_buf[UMAX2S_BUFSIZE]; \
malloc_write("<jemalloc>: "); \
malloc_write(__FILE__); \
malloc_write(":"); \
malloc_write(u2s(__LINE__, 10, line_buf)); \
malloc_write(": Failed assertion: "); \
malloc_write("\""); \
malloc_write(#e); \
malloc_write("\"\n"); \
abort(); \
} \
} while (0)
# else
# define assert(e)
# endif
#endif
#ifdef JEMALLOC_DEBUG
# define dassert(e) assert(e)
#else
# define dassert(e)
#endif
/*
* jemalloc can conceptually be broken into components (arena, tcache, etc.),
* but there are circular dependencies that cannot be broken without
* substantial performance degradation. In order to reduce the effect on
* visual code flow, read the header files in multiple passes, with one of the
* following cpp variables defined during each pass:
*
* JEMALLOC_H_TYPES : Preprocessor-defined constants and psuedo-opaque data
* types.
* JEMALLOC_H_STRUCTS : Data structures.
* JEMALLOC_H_EXTERNS : Extern data declarations and function prototypes.
* JEMALLOC_H_INLINES : Inline functions.
*/
/******************************************************************************/
#define JEMALLOC_H_TYPES
#define ALLOCM_LG_ALIGN_MASK ((int)0x3f)
#define ZU(z) ((size_t)z)
#ifndef __DECONST
# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
#endif
#ifdef JEMALLOC_DEBUG
/* Disable inlining to make debugging easier. */
# define JEMALLOC_INLINE
# define inline
#else
# define JEMALLOC_ENABLE_INLINE
# define JEMALLOC_INLINE static inline
#endif
/* Size of stack-allocated buffer passed to buferror(). */
#define BUFERROR_BUF 64
/* Minimum alignment of allocations is 2^LG_QUANTUM bytes. */
#ifdef __i386__
# define LG_QUANTUM 4
#endif
#ifdef __ia64__
# define LG_QUANTUM 4
#endif
#ifdef __alpha__
# define LG_QUANTUM 4
#endif
#ifdef __sparc64__
# define LG_QUANTUM 4
#endif
#if (defined(__amd64__) || defined(__x86_64__))
# define LG_QUANTUM 4
#endif
#ifdef __arm__
# define LG_QUANTUM 3
#endif
#ifdef __mips__
# define LG_QUANTUM 3
#endif
#ifdef __powerpc__
# define LG_QUANTUM 4
#endif
#ifdef __s390x__
# define LG_QUANTUM 4
#endif
#define QUANTUM ((size_t)(1U << LG_QUANTUM))
#define QUANTUM_MASK (QUANTUM - 1)
/* Return the smallest quantum multiple that is >= a. */
#define QUANTUM_CEILING(a) \
(((a) + QUANTUM_MASK) & ~QUANTUM_MASK)
#define LONG ((size_t)(1U << LG_SIZEOF_LONG))
#define LONG_MASK (LONG - 1)
/* Return the smallest long multiple that is >= a. */
#define LONG_CEILING(a) \
(((a) + LONG_MASK) & ~LONG_MASK)
#define SIZEOF_PTR (1U << LG_SIZEOF_PTR)
#define PTR_MASK (SIZEOF_PTR - 1)
/* Return the smallest (void *) multiple that is >= a. */
#define PTR_CEILING(a) \
(((a) + PTR_MASK) & ~PTR_MASK)
/*
* Maximum size of L1 cache line. This is used to avoid cache line aliasing.
* In addition, this controls the spacing of cacheline-spaced size classes.
*/
#define LG_CACHELINE 6
#define CACHELINE ((size_t)(1U << LG_CACHELINE))
#define CACHELINE_MASK (CACHELINE - 1)
/* Return the smallest cacheline multiple that is >= s. */
#define CACHELINE_CEILING(s) \
(((s) + CACHELINE_MASK) & ~CACHELINE_MASK)
/*
* Page size. STATIC_PAGE_SHIFT is determined by the configure script. If
* DYNAMIC_PAGE_SHIFT is enabled, only use the STATIC_PAGE_* macros where
* compile-time values are required for the purposes of defining data
* structures.
*/
#define STATIC_PAGE_SIZE ((size_t)(1U << STATIC_PAGE_SHIFT))
#define STATIC_PAGE_MASK ((size_t)(STATIC_PAGE_SIZE - 1))
#ifdef PAGE_SHIFT
# undef PAGE_SHIFT
#endif
#ifdef PAGE_SIZE
# undef PAGE_SIZE
#endif
#ifdef PAGE_MASK
# undef PAGE_MASK
#endif
#ifdef DYNAMIC_PAGE_SHIFT
# define PAGE_SHIFT lg_pagesize
# define PAGE_SIZE pagesize
# define PAGE_MASK pagesize_mask
#else
# define PAGE_SHIFT STATIC_PAGE_SHIFT
# define PAGE_SIZE STATIC_PAGE_SIZE
# define PAGE_MASK STATIC_PAGE_MASK
#endif
/* Return the smallest pagesize multiple that is >= s. */
#define PAGE_CEILING(s) \
(((s) + PAGE_MASK) & ~PAGE_MASK)
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/bitmap.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#ifdef JEMALLOC_ZONE
#include "jemalloc/internal/zone.h"
#endif
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_TYPES
/******************************************************************************/
#define JEMALLOC_H_STRUCTS
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/bitmap.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#ifdef JEMALLOC_ZONE
#include "jemalloc/internal/zone.h"
#endif
#include "jemalloc/internal/prof.h"
#ifdef JEMALLOC_STATS
typedef struct {
uint64_t allocated;
uint64_t deallocated;
} thread_allocated_t;
#endif
#undef JEMALLOC_H_STRUCTS
/******************************************************************************/
#define JEMALLOC_H_EXTERNS
extern bool opt_abort;
#ifdef JEMALLOC_FILL
extern bool opt_junk;
#endif
#ifdef JEMALLOC_SYSV
extern bool opt_sysv;
#endif
#ifdef JEMALLOC_XMALLOC
extern bool opt_xmalloc;
#endif
#ifdef JEMALLOC_FILL
extern bool opt_zero;
#endif
extern size_t opt_narenas;
#ifdef DYNAMIC_PAGE_SHIFT
extern size_t pagesize;
extern size_t pagesize_mask;
extern size_t lg_pagesize;
#endif
/* Number of CPUs. */
extern unsigned ncpus;
extern malloc_mutex_t arenas_lock; /* Protects arenas initialization. */
extern pthread_key_t arenas_tsd;
#ifndef NO_TLS
/*
* Map of pthread_self() --> arenas[???], used for selecting an arena to use
* for allocations.
*/
extern __thread arena_t *arenas_tls JEMALLOC_ATTR(tls_model("initial-exec"));
# define ARENA_GET() arenas_tls
# define ARENA_SET(v) do { \
arenas_tls = (v); \
pthread_setspecific(arenas_tsd, (void *)(v)); \
} while (0)
#else
# define ARENA_GET() ((arena_t *)pthread_getspecific(arenas_tsd))
# define ARENA_SET(v) do { \
pthread_setspecific(arenas_tsd, (void *)(v)); \
} while (0)
#endif
/*
* Arenas that are used to service external requests. Not all elements of the
* arenas array are necessarily used; arenas are created lazily as needed.
*/
extern arena_t **arenas;
extern unsigned narenas;
#ifdef JEMALLOC_STATS
# ifndef NO_TLS
extern __thread thread_allocated_t thread_allocated_tls;
# define ALLOCATED_GET() (thread_allocated_tls.allocated)
# define ALLOCATEDP_GET() (&thread_allocated_tls.allocated)
# define DEALLOCATED_GET() (thread_allocated_tls.deallocated)
# define DEALLOCATEDP_GET() (&thread_allocated_tls.deallocated)
# define ALLOCATED_ADD(a, d) do { \
thread_allocated_tls.allocated += a; \
thread_allocated_tls.deallocated += d; \
} while (0)
# else
extern pthread_key_t thread_allocated_tsd;
thread_allocated_t *thread_allocated_get_hard(void);
# define ALLOCATED_GET() (thread_allocated_get()->allocated)
# define ALLOCATEDP_GET() (&thread_allocated_get()->allocated)
# define DEALLOCATED_GET() (thread_allocated_get()->deallocated)
# define DEALLOCATEDP_GET() (&thread_allocated_get()->deallocated)
# define ALLOCATED_ADD(a, d) do { \
thread_allocated_t *thread_allocated = thread_allocated_get(); \
thread_allocated->allocated += (a); \
thread_allocated->deallocated += (d); \
} while (0)
# endif
#endif
arena_t *arenas_extend(unsigned ind);
arena_t *choose_arena_hard(void);
int buferror(int errnum, char *buf, size_t buflen);
void jemalloc_prefork(void);
void jemalloc_postfork(void);
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/bitmap.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/hash.h"
#ifdef JEMALLOC_ZONE
#include "jemalloc/internal/zone.h"
#endif
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_EXTERNS
/******************************************************************************/
#define JEMALLOC_H_INLINES
#include "jemalloc/internal/atomic.h"
#include "jemalloc/internal/prn.h"
#include "jemalloc/internal/ckh.h"
#include "jemalloc/internal/stats.h"
#include "jemalloc/internal/ctl.h"
#include "jemalloc/internal/mutex.h"
#include "jemalloc/internal/mb.h"
#include "jemalloc/internal/extent.h"
#include "jemalloc/internal/base.h"
#include "jemalloc/internal/chunk.h"
#include "jemalloc/internal/huge.h"
#ifndef JEMALLOC_ENABLE_INLINE
size_t pow2_ceil(size_t x);
size_t s2u(size_t size);
size_t sa2u(size_t size, size_t alignment, size_t *run_size_p);
void malloc_write(const char *s);
arena_t *choose_arena(void);
# if (defined(JEMALLOC_STATS) && defined(NO_TLS))
thread_allocated_t *thread_allocated_get(void);
# endif
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
/* Compute the smallest power of 2 that is >= x. */
JEMALLOC_INLINE size_t
pow2_ceil(size_t x)
{
x--;
x |= x >> 1;
x |= x >> 2;
x |= x >> 4;
x |= x >> 8;
x |= x >> 16;
#if (LG_SIZEOF_PTR == 3)
x |= x >> 32;
#endif
x++;
return (x);
}
/*
* Compute usable size that would result from allocating an object with the
* specified size.
*/
JEMALLOC_INLINE size_t
s2u(size_t size)
{
if (size <= small_maxclass)
return (arena_bin_info[SMALL_SIZE2BIN(size)].reg_size);
if (size <= arena_maxclass)
return (PAGE_CEILING(size));
return (CHUNK_CEILING(size));
}
/*
* Compute usable size that would result from allocating an object with the
* specified size and alignment.
*/
JEMALLOC_INLINE size_t
sa2u(size_t size, size_t alignment, size_t *run_size_p)
{
size_t usize;
/*
* Round size up to the nearest multiple of alignment.
*
* This done, we can take advantage of the fact that for each small
* size class, every object is aligned at the smallest power of two
* that is non-zero in the base two representation of the size. For
* example:
*
* Size | Base 2 | Minimum alignment
* -----+----------+------------------
* 96 | 1100000 | 32
* 144 | 10100000 | 32
* 192 | 11000000 | 64
*
* Depending on runtime settings, it is possible that arena_malloc()
* will further round up to a power of two, but that never causes
* correctness issues.
*/
usize = (size + (alignment - 1)) & (-alignment);
/*
* (usize < size) protects against the combination of maximal
* alignment and size greater than maximal alignment.
*/
if (usize < size) {
/* size_t overflow. */
return (0);
}
if (usize <= arena_maxclass && alignment <= PAGE_SIZE) {
if (usize <= small_maxclass)
return (arena_bin_info[SMALL_SIZE2BIN(usize)].reg_size);
return (PAGE_CEILING(usize));
} else {
size_t run_size;
/*
* We can't achieve subpage alignment, so round up alignment
* permanently; it makes later calculations simpler.
*/
alignment = PAGE_CEILING(alignment);
usize = PAGE_CEILING(size);
/*
* (usize < size) protects against very large sizes within
* PAGE_SIZE of SIZE_T_MAX.
*
* (usize + alignment < usize) protects against the
* combination of maximal alignment and usize large enough
* to cause overflow. This is similar to the first overflow
* check above, but it needs to be repeated due to the new
* usize value, which may now be *equal* to maximal
* alignment, whereas before we only detected overflow if the
* original size was *greater* than maximal alignment.
*/
if (usize < size || usize + alignment < usize) {
/* size_t overflow. */
return (0);
}
/*
* Calculate the size of the over-size run that arena_palloc()
* would need to allocate in order to guarantee the alignment.
*/
if (usize >= alignment)
run_size = usize + alignment - PAGE_SIZE;
else {
/*
* It is possible that (alignment << 1) will cause
* overflow, but it doesn't matter because we also
* subtract PAGE_SIZE, which in the case of overflow
* leaves us with a very large run_size. That causes
* the first conditional below to fail, which means
* that the bogus run_size value never gets used for
* anything important.
*/
run_size = (alignment << 1) - PAGE_SIZE;
}
if (run_size_p != NULL)
*run_size_p = run_size;
if (run_size <= arena_maxclass)
return (PAGE_CEILING(usize));
return (CHUNK_CEILING(usize));
}
}
/*
* Wrapper around malloc_message() that avoids the need for
* JEMALLOC_P(malloc_message)(...) throughout the code.
*/
JEMALLOC_INLINE void
malloc_write(const char *s)
{
JEMALLOC_P(malloc_message)(NULL, s);
}
/*
* Choose an arena based on a per-thread value (fast-path code, calls slow-path
* code if necessary).
*/
JEMALLOC_INLINE arena_t *
choose_arena(void)
{
arena_t *ret;
ret = ARENA_GET();
if (ret == NULL) {
ret = choose_arena_hard();
assert(ret != NULL);
}
return (ret);
}
#if (defined(JEMALLOC_STATS) && defined(NO_TLS))
JEMALLOC_INLINE thread_allocated_t *
thread_allocated_get(void)
{
thread_allocated_t *thread_allocated = (thread_allocated_t *)
pthread_getspecific(thread_allocated_tsd);
if (thread_allocated == NULL)
return (thread_allocated_get_hard());
return (thread_allocated);
}
#endif
#endif
#include "jemalloc/internal/bitmap.h"
#include "jemalloc/internal/rtree.h"
#include "jemalloc/internal/tcache.h"
#include "jemalloc/internal/arena.h"
#include "jemalloc/internal/hash.h"
#ifdef JEMALLOC_ZONE
#include "jemalloc/internal/zone.h"
#endif
#ifndef JEMALLOC_ENABLE_INLINE
void *imalloc(size_t size);
void *icalloc(size_t size);
void *ipalloc(size_t usize, size_t alignment, bool zero);
size_t isalloc(const void *ptr);
# ifdef JEMALLOC_IVSALLOC
size_t ivsalloc(const void *ptr);
# endif
void idalloc(void *ptr);
void *iralloc(void *ptr, size_t size, size_t extra, size_t alignment,
bool zero, bool no_move);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_C_))
JEMALLOC_INLINE void *
imalloc(size_t size)
{
assert(size != 0);
if (size <= arena_maxclass)
return (arena_malloc(size, false));
else
return (huge_malloc(size, false));
}
JEMALLOC_INLINE void *
icalloc(size_t size)
{
if (size <= arena_maxclass)
return (arena_malloc(size, true));
else
return (huge_malloc(size, true));
}
JEMALLOC_INLINE void *
ipalloc(size_t usize, size_t alignment, bool zero)
{
void *ret;
assert(usize != 0);
assert(usize == sa2u(usize, alignment, NULL));
if (usize <= arena_maxclass && alignment <= PAGE_SIZE)
ret = arena_malloc(usize, zero);
else {
size_t run_size
#ifdef JEMALLOC_CC_SILENCE
= 0
#endif
;
/*
* Ideally we would only ever call sa2u() once per aligned
* allocation request, and the caller of this function has
* already done so once. However, it's rather burdensome to
* require every caller to pass in run_size, especially given
* that it's only relevant to large allocations. Therefore,
* just call it again here in order to get run_size.
*/
sa2u(usize, alignment, &run_size);
if (run_size <= arena_maxclass) {
ret = arena_palloc(choose_arena(), usize, run_size,
alignment, zero);
} else if (alignment <= chunksize)
ret = huge_malloc(usize, zero);
else
ret = huge_palloc(usize, alignment, zero);
}
assert(((uintptr_t)ret & (alignment - 1)) == 0);
return (ret);
}
JEMALLOC_INLINE size_t
isalloc(const void *ptr)
{
size_t ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
dassert(chunk->arena->magic == ARENA_MAGIC);
#ifdef JEMALLOC_PROF
ret = arena_salloc_demote(ptr);
#else
ret = arena_salloc(ptr);
#endif
} else
ret = huge_salloc(ptr);
return (ret);
}
#ifdef JEMALLOC_IVSALLOC
JEMALLOC_INLINE size_t
ivsalloc(const void *ptr)
{
/* Return 0 if ptr is not within a chunk managed by jemalloc. */
if (rtree_get(chunks_rtree, (uintptr_t)CHUNK_ADDR2BASE(ptr)) == NULL)
return (0);
return (isalloc(ptr));
}
#endif
JEMALLOC_INLINE void
idalloc(void *ptr)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr)
arena_dalloc(chunk->arena, chunk, ptr);
else
huge_dalloc(ptr, true);
}
JEMALLOC_INLINE void *
iralloc(void *ptr, size_t size, size_t extra, size_t alignment, bool zero,
bool no_move)
{
void *ret;
size_t oldsize;
assert(ptr != NULL);
assert(size != 0);
oldsize = isalloc(ptr);
if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
!= 0) {
size_t usize, copysize;
/*
* Existing object alignment is inadquate; allocate new space
* and copy.
*/
if (no_move)
return (NULL);
usize = sa2u(size + extra, alignment, NULL);
if (usize == 0)
return (NULL);
ret = ipalloc(usize, alignment, zero);
if (ret == NULL) {
if (extra == 0)
return (NULL);
/* Try again, without extra this time. */
usize = sa2u(size, alignment, NULL);
if (usize == 0)
return (NULL);
ret = ipalloc(usize, alignment, zero);
if (ret == NULL)
return (NULL);
}
/*
* Copy at most size bytes (not size+extra), since the caller
* has no expectation that the extra bytes will be reliably
* preserved.
*/
copysize = (size < oldsize) ? size : oldsize;
memcpy(ret, ptr, copysize);
idalloc(ptr);
return (ret);
}
if (no_move) {
if (size <= arena_maxclass) {
return (arena_ralloc_no_move(ptr, oldsize, size,
extra, zero));
} else {
return (huge_ralloc_no_move(ptr, oldsize, size,
extra));
}
} else {
if (size + extra <= arena_maxclass) {
return (arena_ralloc(ptr, oldsize, size, extra,
alignment, zero));
} else {
return (huge_ralloc(ptr, oldsize, size, extra,
alignment, zero));
}
}
}
#endif
#include "jemalloc/internal/prof.h"
#undef JEMALLOC_H_INLINES
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void mb_write(void);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MB_C_))
#ifdef __i386__
/*
* According to the Intel Architecture Software Developer's Manual, current
* processors execute instructions in order from the perspective of other
* processors in a multiprocessor system, but 1) Intel reserves the right to
* change that, and 2) the compiler's optimizer could re-order instructions if
* there weren't some form of barrier. Therefore, even if running on an
* architecture that does not need memory barriers (everything through at least
* i686), an "optimizer barrier" is necessary.
*/
JEMALLOC_INLINE void
mb_write(void)
{
# if 0
/* This is a true memory barrier. */
asm volatile ("pusha;"
"xor %%eax,%%eax;"
"cpuid;"
"popa;"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
#else
/*
* This is hopefully enough to keep the compiler from reordering
* instructions around this one.
*/
asm volatile ("nop;"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
#endif
}
#elif (defined(__amd64_) || defined(__x86_64__))
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("sfence"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__powerpc__)
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("eieio"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#elif defined(__sparc64__)
JEMALLOC_INLINE void
mb_write(void)
{
asm volatile ("membar #StoreStore"
: /* Outputs. */
: /* Inputs. */
: "memory" /* Clobbers. */
);
}
#else
/*
* This is much slower than a simple memory barrier, but the semantics of mutex
* unlock make this work.
*/
JEMALLOC_INLINE void
mb_write(void)
{
malloc_mutex_t mtx;
malloc_mutex_init(&mtx);
malloc_mutex_lock(&mtx);
malloc_mutex_unlock(&mtx);
}
#endif
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#ifdef JEMALLOC_OSSPIN
typedef OSSpinLock malloc_mutex_t;
#else
typedef pthread_mutex_t malloc_mutex_t;
#endif
#ifdef PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
# define MALLOC_MUTEX_INITIALIZER PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP
#else
# define MALLOC_MUTEX_INITIALIZER PTHREAD_MUTEX_INITIALIZER
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
#ifdef JEMALLOC_LAZY_LOCK
extern bool isthreaded;
#else
# define isthreaded true
#endif
bool malloc_mutex_init(malloc_mutex_t *mutex);
void malloc_mutex_destroy(malloc_mutex_t *mutex);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
void malloc_mutex_lock(malloc_mutex_t *mutex);
bool malloc_mutex_trylock(malloc_mutex_t *mutex);
void malloc_mutex_unlock(malloc_mutex_t *mutex);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_MUTEX_C_))
JEMALLOC_INLINE void
malloc_mutex_lock(malloc_mutex_t *mutex)
{
if (isthreaded) {
#ifdef JEMALLOC_OSSPIN
OSSpinLockLock(mutex);
#else
pthread_mutex_lock(mutex);
#endif
}
}
JEMALLOC_INLINE bool
malloc_mutex_trylock(malloc_mutex_t *mutex)
{
if (isthreaded) {
#ifdef JEMALLOC_OSSPIN
return (OSSpinLockTry(mutex) == false);
#else
return (pthread_mutex_trylock(mutex) != 0);
#endif
} else
return (false);
}
JEMALLOC_INLINE void
malloc_mutex_unlock(malloc_mutex_t *mutex)
{
if (isthreaded) {
#ifdef JEMALLOC_OSSPIN
OSSpinLockUnlock(mutex);
#else
pthread_mutex_unlock(mutex);
#endif
}
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#define arena_bin_index JEMALLOC_N(arena_bin_index)
#define arena_boot JEMALLOC_N(arena_boot)
#define arena_dalloc JEMALLOC_N(arena_dalloc)
#define arena_dalloc_bin JEMALLOC_N(arena_dalloc_bin)
#define arena_dalloc_large JEMALLOC_N(arena_dalloc_large)
#define arena_malloc JEMALLOC_N(arena_malloc)
#define arena_malloc_large JEMALLOC_N(arena_malloc_large)
#define arena_malloc_small JEMALLOC_N(arena_malloc_small)
#define arena_new JEMALLOC_N(arena_new)
#define arena_palloc JEMALLOC_N(arena_palloc)
#define arena_prof_accum JEMALLOC_N(arena_prof_accum)
#define arena_prof_ctx_get JEMALLOC_N(arena_prof_ctx_get)
#define arena_prof_ctx_set JEMALLOC_N(arena_prof_ctx_set)
#define arena_prof_promoted JEMALLOC_N(arena_prof_promoted)
#define arena_purge_all JEMALLOC_N(arena_purge_all)
#define arena_ralloc JEMALLOC_N(arena_ralloc)
#define arena_ralloc_no_move JEMALLOC_N(arena_ralloc_no_move)
#define arena_run_regind JEMALLOC_N(arena_run_regind)
#define arena_salloc JEMALLOC_N(arena_salloc)
#define arena_salloc_demote JEMALLOC_N(arena_salloc_demote)
#define arena_stats_merge JEMALLOC_N(arena_stats_merge)
#define arena_tcache_fill_small JEMALLOC_N(arena_tcache_fill_small)
#define arenas_bin_i_index JEMALLOC_N(arenas_bin_i_index)
#define arenas_extend JEMALLOC_N(arenas_extend)
#define arenas_lrun_i_index JEMALLOC_N(arenas_lrun_i_index)
#define atomic_add_uint32 JEMALLOC_N(atomic_add_uint32)
#define atomic_add_uint64 JEMALLOC_N(atomic_add_uint64)
#define atomic_sub_uint32 JEMALLOC_N(atomic_sub_uint32)
#define atomic_sub_uint64 JEMALLOC_N(atomic_sub_uint64)
#define base_alloc JEMALLOC_N(base_alloc)
#define base_boot JEMALLOC_N(base_boot)
#define base_node_alloc JEMALLOC_N(base_node_alloc)
#define base_node_dealloc JEMALLOC_N(base_node_dealloc)
#define bitmap_full JEMALLOC_N(bitmap_full)
#define bitmap_get JEMALLOC_N(bitmap_get)
#define bitmap_info_init JEMALLOC_N(bitmap_info_init)
#define bitmap_info_ngroups JEMALLOC_N(bitmap_info_ngroups)
#define bitmap_init JEMALLOC_N(bitmap_init)
#define bitmap_set JEMALLOC_N(bitmap_set)
#define bitmap_sfu JEMALLOC_N(bitmap_sfu)
#define bitmap_size JEMALLOC_N(bitmap_size)
#define bitmap_unset JEMALLOC_N(bitmap_unset)
#define bt_init JEMALLOC_N(bt_init)
#define buferror JEMALLOC_N(buferror)
#define choose_arena JEMALLOC_N(choose_arena)
#define choose_arena_hard JEMALLOC_N(choose_arena_hard)
#define chunk_alloc JEMALLOC_N(chunk_alloc)
#define chunk_alloc_dss JEMALLOC_N(chunk_alloc_dss)
#define chunk_alloc_mmap JEMALLOC_N(chunk_alloc_mmap)
#define chunk_alloc_mmap_noreserve JEMALLOC_N(chunk_alloc_mmap_noreserve)
#define chunk_alloc_swap JEMALLOC_N(chunk_alloc_swap)
#define chunk_boot JEMALLOC_N(chunk_boot)
#define chunk_dealloc JEMALLOC_N(chunk_dealloc)
#define chunk_dealloc_dss JEMALLOC_N(chunk_dealloc_dss)
#define chunk_dealloc_mmap JEMALLOC_N(chunk_dealloc_mmap)
#define chunk_dealloc_swap JEMALLOC_N(chunk_dealloc_swap)
#define chunk_dss_boot JEMALLOC_N(chunk_dss_boot)
#define chunk_in_dss JEMALLOC_N(chunk_in_dss)
#define chunk_in_swap JEMALLOC_N(chunk_in_swap)
#define chunk_mmap_boot JEMALLOC_N(chunk_mmap_boot)
#define chunk_swap_boot JEMALLOC_N(chunk_swap_boot)
#define chunk_swap_enable JEMALLOC_N(chunk_swap_enable)
#define ckh_bucket_search JEMALLOC_N(ckh_bucket_search)
#define ckh_count JEMALLOC_N(ckh_count)
#define ckh_delete JEMALLOC_N(ckh_delete)
#define ckh_evict_reloc_insert JEMALLOC_N(ckh_evict_reloc_insert)
#define ckh_insert JEMALLOC_N(ckh_insert)
#define ckh_isearch JEMALLOC_N(ckh_isearch)
#define ckh_iter JEMALLOC_N(ckh_iter)
#define ckh_new JEMALLOC_N(ckh_new)
#define ckh_pointer_hash JEMALLOC_N(ckh_pointer_hash)
#define ckh_pointer_keycomp JEMALLOC_N(ckh_pointer_keycomp)
#define ckh_rebuild JEMALLOC_N(ckh_rebuild)
#define ckh_remove JEMALLOC_N(ckh_remove)
#define ckh_search JEMALLOC_N(ckh_search)
#define ckh_string_hash JEMALLOC_N(ckh_string_hash)
#define ckh_string_keycomp JEMALLOC_N(ckh_string_keycomp)
#define ckh_try_bucket_insert JEMALLOC_N(ckh_try_bucket_insert)
#define ckh_try_insert JEMALLOC_N(ckh_try_insert)
#define create_zone JEMALLOC_N(create_zone)
#define ctl_boot JEMALLOC_N(ctl_boot)
#define ctl_bymib JEMALLOC_N(ctl_bymib)
#define ctl_byname JEMALLOC_N(ctl_byname)
#define ctl_nametomib JEMALLOC_N(ctl_nametomib)
#define extent_tree_ad_first JEMALLOC_N(extent_tree_ad_first)
#define extent_tree_ad_insert JEMALLOC_N(extent_tree_ad_insert)
#define extent_tree_ad_iter JEMALLOC_N(extent_tree_ad_iter)
#define extent_tree_ad_iter_recurse JEMALLOC_N(extent_tree_ad_iter_recurse)
#define extent_tree_ad_iter_start JEMALLOC_N(extent_tree_ad_iter_start)
#define extent_tree_ad_last JEMALLOC_N(extent_tree_ad_last)
#define extent_tree_ad_new JEMALLOC_N(extent_tree_ad_new)
#define extent_tree_ad_next JEMALLOC_N(extent_tree_ad_next)
#define extent_tree_ad_nsearch JEMALLOC_N(extent_tree_ad_nsearch)
#define extent_tree_ad_prev JEMALLOC_N(extent_tree_ad_prev)
#define extent_tree_ad_psearch JEMALLOC_N(extent_tree_ad_psearch)
#define extent_tree_ad_remove JEMALLOC_N(extent_tree_ad_remove)
#define extent_tree_ad_reverse_iter JEMALLOC_N(extent_tree_ad_reverse_iter)
#define extent_tree_ad_reverse_iter_recurse JEMALLOC_N(extent_tree_ad_reverse_iter_recurse)
#define extent_tree_ad_reverse_iter_start JEMALLOC_N(extent_tree_ad_reverse_iter_start)
#define extent_tree_ad_search JEMALLOC_N(extent_tree_ad_search)
#define extent_tree_szad_first JEMALLOC_N(extent_tree_szad_first)
#define extent_tree_szad_insert JEMALLOC_N(extent_tree_szad_insert)
#define extent_tree_szad_iter JEMALLOC_N(extent_tree_szad_iter)
#define extent_tree_szad_iter_recurse JEMALLOC_N(extent_tree_szad_iter_recurse)
#define extent_tree_szad_iter_start JEMALLOC_N(extent_tree_szad_iter_start)
#define extent_tree_szad_last JEMALLOC_N(extent_tree_szad_last)
#define extent_tree_szad_new JEMALLOC_N(extent_tree_szad_new)
#define extent_tree_szad_next JEMALLOC_N(extent_tree_szad_next)
#define extent_tree_szad_nsearch JEMALLOC_N(extent_tree_szad_nsearch)
#define extent_tree_szad_prev JEMALLOC_N(extent_tree_szad_prev)
#define extent_tree_szad_psearch JEMALLOC_N(extent_tree_szad_psearch)
#define extent_tree_szad_remove JEMALLOC_N(extent_tree_szad_remove)
#define extent_tree_szad_reverse_iter JEMALLOC_N(extent_tree_szad_reverse_iter)
#define extent_tree_szad_reverse_iter_recurse JEMALLOC_N(extent_tree_szad_reverse_iter_recurse)
#define extent_tree_szad_reverse_iter_start JEMALLOC_N(extent_tree_szad_reverse_iter_start)
#define extent_tree_szad_search JEMALLOC_N(extent_tree_szad_search)
#define hash JEMALLOC_N(hash)
#define huge_boot JEMALLOC_N(huge_boot)
#define huge_dalloc JEMALLOC_N(huge_dalloc)
#define huge_malloc JEMALLOC_N(huge_malloc)
#define huge_palloc JEMALLOC_N(huge_palloc)
#define huge_prof_ctx_get JEMALLOC_N(huge_prof_ctx_get)
#define huge_prof_ctx_set JEMALLOC_N(huge_prof_ctx_set)
#define huge_ralloc JEMALLOC_N(huge_ralloc)
#define huge_ralloc_no_move JEMALLOC_N(huge_ralloc_no_move)
#define huge_salloc JEMALLOC_N(huge_salloc)
#define iallocm JEMALLOC_N(iallocm)
#define icalloc JEMALLOC_N(icalloc)
#define idalloc JEMALLOC_N(idalloc)
#define imalloc JEMALLOC_N(imalloc)
#define ipalloc JEMALLOC_N(ipalloc)
#define iralloc JEMALLOC_N(iralloc)
#define isalloc JEMALLOC_N(isalloc)
#define ivsalloc JEMALLOC_N(ivsalloc)
#define jemalloc_darwin_init JEMALLOC_N(jemalloc_darwin_init)
#define jemalloc_postfork JEMALLOC_N(jemalloc_postfork)
#define jemalloc_prefork JEMALLOC_N(jemalloc_prefork)
#define malloc_cprintf JEMALLOC_N(malloc_cprintf)
#define malloc_mutex_destroy JEMALLOC_N(malloc_mutex_destroy)
#define malloc_mutex_init JEMALLOC_N(malloc_mutex_init)
#define malloc_mutex_lock JEMALLOC_N(malloc_mutex_lock)
#define malloc_mutex_trylock JEMALLOC_N(malloc_mutex_trylock)
#define malloc_mutex_unlock JEMALLOC_N(malloc_mutex_unlock)
#define malloc_printf JEMALLOC_N(malloc_printf)
#define malloc_write JEMALLOC_N(malloc_write)
#define mb_write JEMALLOC_N(mb_write)
#define pow2_ceil JEMALLOC_N(pow2_ceil)
#define prof_backtrace JEMALLOC_N(prof_backtrace)
#define prof_boot0 JEMALLOC_N(prof_boot0)
#define prof_boot1 JEMALLOC_N(prof_boot1)
#define prof_boot2 JEMALLOC_N(prof_boot2)
#define prof_ctx_get JEMALLOC_N(prof_ctx_get)
#define prof_ctx_set JEMALLOC_N(prof_ctx_set)
#define prof_free JEMALLOC_N(prof_free)
#define prof_gdump JEMALLOC_N(prof_gdump)
#define prof_idump JEMALLOC_N(prof_idump)
#define prof_lookup JEMALLOC_N(prof_lookup)
#define prof_malloc JEMALLOC_N(prof_malloc)
#define prof_mdump JEMALLOC_N(prof_mdump)
#define prof_realloc JEMALLOC_N(prof_realloc)
#define prof_sample_accum_update JEMALLOC_N(prof_sample_accum_update)
#define prof_sample_threshold_update JEMALLOC_N(prof_sample_threshold_update)
#define prof_tdata_init JEMALLOC_N(prof_tdata_init)
#define pthread_create JEMALLOC_N(pthread_create)
#define rtree_get JEMALLOC_N(rtree_get)
#define rtree_get_locked JEMALLOC_N(rtree_get_locked)
#define rtree_new JEMALLOC_N(rtree_new)
#define rtree_set JEMALLOC_N(rtree_set)
#define s2u JEMALLOC_N(s2u)
#define sa2u JEMALLOC_N(sa2u)
#define stats_arenas_i_bins_j_index JEMALLOC_N(stats_arenas_i_bins_j_index)
#define stats_arenas_i_index JEMALLOC_N(stats_arenas_i_index)
#define stats_arenas_i_lruns_j_index JEMALLOC_N(stats_arenas_i_lruns_j_index)
#define stats_cactive_add JEMALLOC_N(stats_cactive_add)
#define stats_cactive_get JEMALLOC_N(stats_cactive_get)
#define stats_cactive_sub JEMALLOC_N(stats_cactive_sub)
#define stats_print JEMALLOC_N(stats_print)
#define szone2ozone JEMALLOC_N(szone2ozone)
#define tcache_alloc_easy JEMALLOC_N(tcache_alloc_easy)
#define tcache_alloc_large JEMALLOC_N(tcache_alloc_large)
#define tcache_alloc_small JEMALLOC_N(tcache_alloc_small)
#define tcache_alloc_small_hard JEMALLOC_N(tcache_alloc_small_hard)
#define tcache_bin_flush_large JEMALLOC_N(tcache_bin_flush_large)
#define tcache_bin_flush_small JEMALLOC_N(tcache_bin_flush_small)
#define tcache_boot JEMALLOC_N(tcache_boot)
#define tcache_create JEMALLOC_N(tcache_create)
#define tcache_dalloc_large JEMALLOC_N(tcache_dalloc_large)
#define tcache_dalloc_small JEMALLOC_N(tcache_dalloc_small)
#define tcache_destroy JEMALLOC_N(tcache_destroy)
#define tcache_event JEMALLOC_N(tcache_event)
#define tcache_get JEMALLOC_N(tcache_get)
#define tcache_stats_merge JEMALLOC_N(tcache_stats_merge)
#define thread_allocated_get JEMALLOC_N(thread_allocated_get)
#define thread_allocated_get_hard JEMALLOC_N(thread_allocated_get_hard)
#define u2s JEMALLOC_N(u2s)
#ifdef JEMALLOC_PROF
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
typedef struct prof_bt_s prof_bt_t;
typedef struct prof_cnt_s prof_cnt_t;
typedef struct prof_thr_cnt_s prof_thr_cnt_t;
typedef struct prof_ctx_s prof_ctx_t;
typedef struct prof_tdata_s prof_tdata_t;
/* Option defaults. */
#define PROF_PREFIX_DEFAULT "jeprof"
#define LG_PROF_BT_MAX_DEFAULT 7
#define LG_PROF_SAMPLE_DEFAULT 0
#define LG_PROF_INTERVAL_DEFAULT -1
#define LG_PROF_TCMAX_DEFAULT -1
/*
* Hard limit on stack backtrace depth. Note that the version of
* prof_backtrace() that is based on __builtin_return_address() necessarily has
* a hard-coded number of backtrace frame handlers.
*/
#if (defined(JEMALLOC_PROF_LIBGCC) || defined(JEMALLOC_PROF_LIBUNWIND))
# define LG_PROF_BT_MAX ((ZU(1) << (LG_SIZEOF_PTR+3)) - 1)
#else
# define LG_PROF_BT_MAX 7 /* >= LG_PROF_BT_MAX_DEFAULT */
#endif
#define PROF_BT_MAX (1U << LG_PROF_BT_MAX)
/* Initial hash table size. */
#define PROF_CKH_MINITEMS 64
/* Size of memory buffer to use when writing dump files. */
#define PROF_DUMP_BUF_SIZE 65536
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct prof_bt_s {
/* Backtrace, stored as len program counters. */
void **vec;
unsigned len;
};
#ifdef JEMALLOC_PROF_LIBGCC
/* Data structure passed to libgcc _Unwind_Backtrace() callback functions. */
typedef struct {
prof_bt_t *bt;
unsigned nignore;
unsigned max;
} prof_unwind_data_t;
#endif
struct prof_cnt_s {
/*
* Profiling counters. An allocation/deallocation pair can operate on
* different prof_thr_cnt_t objects that are linked into the same
* prof_ctx_t cnts_ql, so it is possible for the cur* counters to go
* negative. In principle it is possible for the *bytes counters to
* overflow/underflow, but a general solution would require something
* like 128-bit counters; this implementation doesn't bother to solve
* that problem.
*/
int64_t curobjs;
int64_t curbytes;
uint64_t accumobjs;
uint64_t accumbytes;
};
struct prof_thr_cnt_s {
/* Linkage into prof_ctx_t's cnts_ql. */
ql_elm(prof_thr_cnt_t) cnts_link;
/* Linkage into thread's LRU. */
ql_elm(prof_thr_cnt_t) lru_link;
/*
* Associated context. If a thread frees an object that it did not
* allocate, it is possible that the context is not cached in the
* thread's hash table, in which case it must be able to look up the
* context, insert a new prof_thr_cnt_t into the thread's hash table,
* and link it into the prof_ctx_t's cnts_ql.
*/
prof_ctx_t *ctx;
/*
* Threads use memory barriers to update the counters. Since there is
* only ever one writer, the only challenge is for the reader to get a
* consistent read of the counters.
*
* The writer uses this series of operations:
*
* 1) Increment epoch to an odd number.
* 2) Update counters.
* 3) Increment epoch to an even number.
*
* The reader must assure 1) that the epoch is even while it reads the
* counters, and 2) that the epoch doesn't change between the time it
* starts and finishes reading the counters.
*/
unsigned epoch;
/* Profiling counters. */
prof_cnt_t cnts;
};
struct prof_ctx_s {
/* Associated backtrace. */
prof_bt_t *bt;
/* Protects cnt_merged and cnts_ql. */
malloc_mutex_t lock;
/* Temporary storage for summation during dump. */
prof_cnt_t cnt_summed;
/* When threads exit, they merge their stats into cnt_merged. */
prof_cnt_t cnt_merged;
/*
* List of profile counters, one for each thread that has allocated in
* this context.
*/
ql_head(prof_thr_cnt_t) cnts_ql;
};
struct prof_tdata_s {
/*
* Hash of (prof_bt_t *)-->(prof_thr_cnt_t *). Each thread keeps a
* cache of backtraces, with associated thread-specific prof_thr_cnt_t
* objects. Other threads may read the prof_thr_cnt_t contents, but no
* others will ever write them.
*
* Upon thread exit, the thread must merge all the prof_thr_cnt_t
* counter data into the associated prof_ctx_t objects, and unlink/free
* the prof_thr_cnt_t objects.
*/
ckh_t bt2cnt;
/* LRU for contents of bt2cnt. */
ql_head(prof_thr_cnt_t) lru_ql;
/* Backtrace vector, used for calls to prof_backtrace(). */
void **vec;
/* Sampling state. */
uint64_t prn_state;
uint64_t threshold;
uint64_t accum;
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_prof;
/*
* Even if opt_prof is true, sampling can be temporarily disabled by setting
* opt_prof_active to false. No locking is used when updating opt_prof_active,
* so there are no guarantees regarding how long it will take for all threads
* to notice state changes.
*/
extern bool opt_prof_active;
extern size_t opt_lg_prof_bt_max; /* Maximum backtrace depth. */
extern size_t opt_lg_prof_sample; /* Mean bytes between samples. */
extern ssize_t opt_lg_prof_interval; /* lg(prof_interval). */
extern bool opt_prof_gdump; /* High-water memory dumping. */
extern bool opt_prof_leak; /* Dump leak summary at exit. */
extern bool opt_prof_accum; /* Report cumulative bytes. */
extern ssize_t opt_lg_prof_tcmax; /* lg(max per thread bactrace cache) */
extern char opt_prof_prefix[PATH_MAX + 1];
/*
* Profile dump interval, measured in bytes allocated. Each arena triggers a
* profile dump when it reaches this threshold. The effect is that the
* interval between profile dumps averages prof_interval, though the actual
* interval between dumps will tend to be sporadic, and the interval will be a
* maximum of approximately (prof_interval * narenas).
*/
extern uint64_t prof_interval;
/*
* If true, promote small sampled objects to large objects, since small run
* headers do not have embedded profile context pointers.
*/
extern bool prof_promote;
/* (1U << opt_lg_prof_bt_max). */
extern unsigned prof_bt_max;
/* Thread-specific backtrace cache, used to reduce bt2ctx contention. */
#ifndef NO_TLS
extern __thread prof_tdata_t *prof_tdata_tls
JEMALLOC_ATTR(tls_model("initial-exec"));
# define PROF_TCACHE_GET() prof_tdata_tls
# define PROF_TCACHE_SET(v) do { \
prof_tdata_tls = (v); \
pthread_setspecific(prof_tdata_tsd, (void *)(v)); \
} while (0)
#else
# define PROF_TCACHE_GET() \
((prof_tdata_t *)pthread_getspecific(prof_tdata_tsd))
# define PROF_TCACHE_SET(v) do { \
pthread_setspecific(prof_tdata_tsd, (void *)(v)); \
} while (0)
#endif
/*
* Same contents as b2cnt_tls, but initialized such that the TSD destructor is
* called when a thread exits, so that prof_tdata_tls contents can be merged,
* unlinked, and deallocated.
*/
extern pthread_key_t prof_tdata_tsd;
void bt_init(prof_bt_t *bt, void **vec);
void prof_backtrace(prof_bt_t *bt, unsigned nignore, unsigned max);
prof_thr_cnt_t *prof_lookup(prof_bt_t *bt);
void prof_idump(void);
bool prof_mdump(const char *filename);
void prof_gdump(void);
prof_tdata_t *prof_tdata_init(void);
void prof_boot0(void);
void prof_boot1(void);
bool prof_boot2(void);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#define PROF_ALLOC_PREP(nignore, size, ret) do { \
prof_tdata_t *prof_tdata; \
prof_bt_t bt; \
\
assert(size == s2u(size)); \
\
prof_tdata = PROF_TCACHE_GET(); \
if (prof_tdata == NULL) { \
prof_tdata = prof_tdata_init(); \
if (prof_tdata == NULL) { \
ret = NULL; \
break; \
} \
} \
\
if (opt_prof_active == false) { \
/* Sampling is currently inactive, so avoid sampling. */\
ret = (prof_thr_cnt_t *)(uintptr_t)1U; \
} else if (opt_lg_prof_sample == 0) { \
/* Don't bother with sampling logic, since sampling */\
/* interval is 1. */\
bt_init(&bt, prof_tdata->vec); \
prof_backtrace(&bt, nignore, prof_bt_max); \
ret = prof_lookup(&bt); \
} else { \
if (prof_tdata->threshold == 0) { \
/* Initialize. Seed the prng differently for */\
/* each thread. */\
prof_tdata->prn_state = \
(uint64_t)(uintptr_t)&size; \
prof_sample_threshold_update(prof_tdata); \
} \
\
/* Determine whether to capture a backtrace based on */\
/* whether size is enough for prof_accum to reach */\
/* prof_tdata->threshold. However, delay updating */\
/* these variables until prof_{m,re}alloc(), because */\
/* we don't know for sure that the allocation will */\
/* succeed. */\
/* */\
/* Use subtraction rather than addition to avoid */\
/* potential integer overflow. */\
if (size >= prof_tdata->threshold - \
prof_tdata->accum) { \
bt_init(&bt, prof_tdata->vec); \
prof_backtrace(&bt, nignore, prof_bt_max); \
ret = prof_lookup(&bt); \
} else \
ret = (prof_thr_cnt_t *)(uintptr_t)1U; \
} \
} while (0)
#ifndef JEMALLOC_ENABLE_INLINE
void prof_sample_threshold_update(prof_tdata_t *prof_tdata);
prof_ctx_t *prof_ctx_get(const void *ptr);
void prof_ctx_set(const void *ptr, prof_ctx_t *ctx);
bool prof_sample_accum_update(size_t size);
void prof_malloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt);
void prof_realloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt,
size_t old_size, prof_ctx_t *old_ctx);
void prof_free(const void *ptr, size_t size);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_PROF_C_))
JEMALLOC_INLINE void
prof_sample_threshold_update(prof_tdata_t *prof_tdata)
{
uint64_t r;
double u;
/*
* Compute sample threshold as a geometrically distributed random
* variable with mean (2^opt_lg_prof_sample).
*
* __ __
* | log(u) | 1
* prof_tdata->threshold = | -------- |, where p = -------------------
* | log(1-p) | opt_lg_prof_sample
* 2
*
* For more information on the math, see:
*
* Non-Uniform Random Variate Generation
* Luc Devroye
* Springer-Verlag, New York, 1986
* pp 500
* (http://cg.scs.carleton.ca/~luc/rnbookindex.html)
*/
prn64(r, 53, prof_tdata->prn_state,
(uint64_t)6364136223846793005LLU, (uint64_t)1442695040888963407LLU);
u = (double)r * (1.0/9007199254740992.0L);
prof_tdata->threshold = (uint64_t)(log(u) /
log(1.0 - (1.0 / (double)((uint64_t)1U << opt_lg_prof_sample))))
+ (uint64_t)1U;
}
JEMALLOC_INLINE prof_ctx_t *
prof_ctx_get(const void *ptr)
{
prof_ctx_t *ret;
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
dassert(chunk->arena->magic == ARENA_MAGIC);
ret = arena_prof_ctx_get(ptr);
} else
ret = huge_prof_ctx_get(ptr);
return (ret);
}
JEMALLOC_INLINE void
prof_ctx_set(const void *ptr, prof_ctx_t *ctx)
{
arena_chunk_t *chunk;
assert(ptr != NULL);
chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
if (chunk != ptr) {
/* Region. */
dassert(chunk->arena->magic == ARENA_MAGIC);
arena_prof_ctx_set(ptr, ctx);
} else
huge_prof_ctx_set(ptr, ctx);
}
JEMALLOC_INLINE bool
prof_sample_accum_update(size_t size)
{
prof_tdata_t *prof_tdata;
/* Sampling logic is unnecessary if the interval is 1. */
assert(opt_lg_prof_sample != 0);
prof_tdata = PROF_TCACHE_GET();
assert(prof_tdata != NULL);
/* Take care to avoid integer overflow. */
if (size >= prof_tdata->threshold - prof_tdata->accum) {
prof_tdata->accum -= (prof_tdata->threshold - size);
/* Compute new sample threshold. */
prof_sample_threshold_update(prof_tdata);
while (prof_tdata->accum >= prof_tdata->threshold) {
prof_tdata->accum -= prof_tdata->threshold;
prof_sample_threshold_update(prof_tdata);
}
return (false);
} else {
prof_tdata->accum += size;
return (true);
}
}
JEMALLOC_INLINE void
prof_malloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt)
{
assert(ptr != NULL);
assert(size == isalloc(ptr));
if (opt_lg_prof_sample != 0) {
if (prof_sample_accum_update(size)) {
/*
* Don't sample. For malloc()-like allocation, it is
* always possible to tell in advance how large an
* object's usable size will be, so there should never
* be a difference between the size passed to
* PROF_ALLOC_PREP() and prof_malloc().
*/
assert((uintptr_t)cnt == (uintptr_t)1U);
}
}
if ((uintptr_t)cnt > (uintptr_t)1U) {
prof_ctx_set(ptr, cnt->ctx);
cnt->epoch++;
/*********/
mb_write();
/*********/
cnt->cnts.curobjs++;
cnt->cnts.curbytes += size;
if (opt_prof_accum) {
cnt->cnts.accumobjs++;
cnt->cnts.accumbytes += size;
}
/*********/
mb_write();
/*********/
cnt->epoch++;
/*********/
mb_write();
/*********/
} else
prof_ctx_set(ptr, (prof_ctx_t *)(uintptr_t)1U);
}
JEMALLOC_INLINE void
prof_realloc(const void *ptr, size_t size, prof_thr_cnt_t *cnt,
size_t old_size, prof_ctx_t *old_ctx)
{
prof_thr_cnt_t *told_cnt;
assert(ptr != NULL || (uintptr_t)cnt <= (uintptr_t)1U);
if (ptr != NULL) {
assert(size == isalloc(ptr));
if (opt_lg_prof_sample != 0) {
if (prof_sample_accum_update(size)) {
/*
* Don't sample. The size passed to
* PROF_ALLOC_PREP() was larger than what
* actually got allocated, so a backtrace was
* captured for this allocation, even though
* its actual size was insufficient to cross
* the sample threshold.
*/
cnt = (prof_thr_cnt_t *)(uintptr_t)1U;
}
}
}
if ((uintptr_t)old_ctx > (uintptr_t)1U) {
told_cnt = prof_lookup(old_ctx->bt);
if (told_cnt == NULL) {
/*
* It's too late to propagate OOM for this realloc(),
* so operate directly on old_cnt->ctx->cnt_merged.
*/
malloc_mutex_lock(&old_ctx->lock);
old_ctx->cnt_merged.curobjs--;
old_ctx->cnt_merged.curbytes -= old_size;
malloc_mutex_unlock(&old_ctx->lock);
told_cnt = (prof_thr_cnt_t *)(uintptr_t)1U;
}
} else
told_cnt = (prof_thr_cnt_t *)(uintptr_t)1U;
if ((uintptr_t)told_cnt > (uintptr_t)1U)
told_cnt->epoch++;
if ((uintptr_t)cnt > (uintptr_t)1U) {
prof_ctx_set(ptr, cnt->ctx);
cnt->epoch++;
} else
prof_ctx_set(ptr, (prof_ctx_t *)(uintptr_t)1U);
/*********/
mb_write();
/*********/
if ((uintptr_t)told_cnt > (uintptr_t)1U) {
told_cnt->cnts.curobjs--;
told_cnt->cnts.curbytes -= old_size;
}
if ((uintptr_t)cnt > (uintptr_t)1U) {
cnt->cnts.curobjs++;
cnt->cnts.curbytes += size;
if (opt_prof_accum) {
cnt->cnts.accumobjs++;
cnt->cnts.accumbytes += size;
}
}
/*********/
mb_write();
/*********/
if ((uintptr_t)told_cnt > (uintptr_t)1U)
told_cnt->epoch++;
if ((uintptr_t)cnt > (uintptr_t)1U)
cnt->epoch++;
/*********/
mb_write(); /* Not strictly necessary. */
}
JEMALLOC_INLINE void
prof_free(const void *ptr, size_t size)
{
prof_ctx_t *ctx = prof_ctx_get(ptr);
if ((uintptr_t)ctx > (uintptr_t)1) {
assert(size == isalloc(ptr));
prof_thr_cnt_t *tcnt = prof_lookup(ctx->bt);
if (tcnt != NULL) {
tcnt->epoch++;
/*********/
mb_write();
/*********/
tcnt->cnts.curobjs--;
tcnt->cnts.curbytes -= size;
/*********/
mb_write();
/*********/
tcnt->epoch++;
/*********/
mb_write();
/*********/
} else {
/*
* OOM during free() cannot be propagated, so operate
* directly on cnt->ctx->cnt_merged.
*/
malloc_mutex_lock(&ctx->lock);
ctx->cnt_merged.curobjs--;
ctx->cnt_merged.curbytes -= size;
malloc_mutex_unlock(&ctx->lock);
}
}
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
#endif /* JEMALLOC_PROF */
/*
* List definitions.
*/
#define ql_head(a_type) \
struct { \
a_type *qlh_first; \
}
#define ql_head_initializer(a_head) {NULL}
#define ql_elm(a_type) qr(a_type)
/* List functions. */
#define ql_new(a_head) do { \
(a_head)->qlh_first = NULL; \
} while (0)
#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
#define ql_first(a_head) ((a_head)->qlh_first)
#define ql_last(a_head, a_field) \
((ql_first(a_head) != NULL) \
? qr_prev(ql_first(a_head), a_field) : NULL)
#define ql_next(a_head, a_elm, a_field) \
((ql_last(a_head, a_field) != (a_elm)) \
? qr_next((a_elm), a_field) : NULL)
#define ql_prev(a_head, a_elm, a_field) \
((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
: NULL)
#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
qr_before_insert((a_qlelm), (a_elm), a_field); \
if (ql_first(a_head) == (a_qlelm)) { \
ql_first(a_head) = (a_elm); \
} \
} while (0)
#define ql_after_insert(a_qlelm, a_elm, a_field) \
qr_after_insert((a_qlelm), (a_elm), a_field)
#define ql_head_insert(a_head, a_elm, a_field) do { \
if (ql_first(a_head) != NULL) { \
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
} \
ql_first(a_head) = (a_elm); \
} while (0)
#define ql_tail_insert(a_head, a_elm, a_field) do { \
if (ql_first(a_head) != NULL) { \
qr_before_insert(ql_first(a_head), (a_elm), a_field); \
} \
ql_first(a_head) = qr_next((a_elm), a_field); \
} while (0)
#define ql_remove(a_head, a_elm, a_field) do { \
if (ql_first(a_head) == (a_elm)) { \
ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
} \
if (ql_first(a_head) != (a_elm)) { \
qr_remove((a_elm), a_field); \
} else { \
ql_first(a_head) = NULL; \
} \
} while (0)
#define ql_head_remove(a_head, a_type, a_field) do { \
a_type *t = ql_first(a_head); \
ql_remove((a_head), t, a_field); \
} while (0)
#define ql_tail_remove(a_head, a_type, a_field) do { \
a_type *t = ql_last(a_head, a_field); \
ql_remove((a_head), t, a_field); \
} while (0)
#define ql_foreach(a_var, a_head, a_field) \
qr_foreach((a_var), ql_first(a_head), a_field)
#define ql_reverse_foreach(a_var, a_head, a_field) \
qr_reverse_foreach((a_var), ql_first(a_head), a_field)
/* Ring definitions. */
#define qr(a_type) \
struct { \
a_type *qre_next; \
a_type *qre_prev; \
}
/* Ring functions. */
#define qr_new(a_qr, a_field) do { \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
(a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
(a_qr)->a_field.qre_next = (a_qrelm); \
(a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
(a_qrelm)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_after_insert(a_qrelm, a_qr, a_field) \
do \
{ \
(a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
(a_qr)->a_field.qre_prev = (a_qrelm); \
(a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
(a_qrelm)->a_field.qre_next = (a_qr); \
} while (0)
#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
void *t; \
(a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
(a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
t = (a_qr_a)->a_field.qre_prev; \
(a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
(a_qr_b)->a_field.qre_prev = t; \
} while (0)
/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
* have two copies of the code. */
#define qr_split(a_qr_a, a_qr_b, a_field) \
qr_meld((a_qr_a), (a_qr_b), a_field)
#define qr_remove(a_qr, a_field) do { \
(a_qr)->a_field.qre_prev->a_field.qre_next \
= (a_qr)->a_field.qre_next; \
(a_qr)->a_field.qre_next->a_field.qre_prev \
= (a_qr)->a_field.qre_prev; \
(a_qr)->a_field.qre_next = (a_qr); \
(a_qr)->a_field.qre_prev = (a_qr); \
} while (0)
#define qr_foreach(var, a_qr, a_field) \
for ((var) = (a_qr); \
(var) != NULL; \
(var) = (((var)->a_field.qre_next != (a_qr)) \
? (var)->a_field.qre_next : NULL))
#define qr_reverse_foreach(var, a_qr, a_field) \
for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
(var) != NULL; \
(var) = (((var) != (a_qr)) \
? (var)->a_field.qre_prev : NULL))
/*-
*******************************************************************************
*
* cpp macro implementation of left-leaning 2-3 red-black trees. Parent
* pointers are not used, and color bits are stored in the least significant
* bit of right-child pointers (if RB_COMPACT is defined), thus making node
* linkage as compact as is possible for red-black trees.
*
* Usage:
*
* #include <stdint.h>
* #include <stdbool.h>
* #define NDEBUG // (Optional, see assert(3).)
* #include <assert.h>
* #define RB_COMPACT // (Optional, embed color bits in right-child pointers.)
* #include <rb.h>
* ...
*
*******************************************************************************
*/
#ifndef RB_H_
#define RB_H_
#if 0
__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 204493 2010-02-28 22:57:13Z jasone $");
#endif
#ifdef RB_COMPACT
/* Node structure. */
#define rb_node(a_type) \
struct { \
a_type *rbn_left; \
a_type *rbn_right_red; \
}
#else
#define rb_node(a_type) \
struct { \
a_type *rbn_left; \
a_type *rbn_right; \
bool rbn_red; \
}
#endif
/* Root structure. */
#define rb_tree(a_type) \
struct { \
a_type *rbt_root; \
a_type rbt_nil; \
}
/* Left accessors. */
#define rbtn_left_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_left)
#define rbtn_left_set(a_type, a_field, a_node, a_left) do { \
(a_node)->a_field.rbn_left = a_left; \
} while (0)
#ifdef RB_COMPACT
/* Right accessors. */
#define rbtn_right_get(a_type, a_field, a_node) \
((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
& ((ssize_t)-2)))
#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
| (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
} while (0)
/* Color accessors. */
#define rbtn_red_get(a_type, a_field, a_node) \
((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
& ((size_t)1)))
#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
(a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
| ((ssize_t)a_red)); \
} while (0)
#define rbtn_red_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
(a_node)->a_field.rbn_right_red) | ((size_t)1)); \
} while (0)
#define rbtn_black_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
(a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
} while (0)
#else
/* Right accessors. */
#define rbtn_right_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_right)
#define rbtn_right_set(a_type, a_field, a_node, a_right) do { \
(a_node)->a_field.rbn_right = a_right; \
} while (0)
/* Color accessors. */
#define rbtn_red_get(a_type, a_field, a_node) \
((a_node)->a_field.rbn_red)
#define rbtn_color_set(a_type, a_field, a_node, a_red) do { \
(a_node)->a_field.rbn_red = (a_red); \
} while (0)
#define rbtn_red_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_red = true; \
} while (0)
#define rbtn_black_set(a_type, a_field, a_node) do { \
(a_node)->a_field.rbn_red = false; \
} while (0)
#endif
/* Node initializer. */
#define rbt_node_new(a_type, a_field, a_rbt, a_node) do { \
rbtn_left_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \
rbtn_right_set(a_type, a_field, (a_node), &(a_rbt)->rbt_nil); \
rbtn_red_set(a_type, a_field, (a_node)); \
} while (0)
/* Tree initializer. */
#define rb_new(a_type, a_field, a_rbt) do { \
(a_rbt)->rbt_root = &(a_rbt)->rbt_nil; \
rbt_node_new(a_type, a_field, a_rbt, &(a_rbt)->rbt_nil); \
rbtn_black_set(a_type, a_field, &(a_rbt)->rbt_nil); \
} while (0)
/* Internal utility macros. */
#define rbtn_first(a_type, a_field, a_rbt, a_root, r_node) do { \
(r_node) = (a_root); \
if ((r_node) != &(a_rbt)->rbt_nil) { \
for (; \
rbtn_left_get(a_type, a_field, (r_node)) != &(a_rbt)->rbt_nil;\
(r_node) = rbtn_left_get(a_type, a_field, (r_node))) { \
} \
} \
} while (0)
#define rbtn_last(a_type, a_field, a_rbt, a_root, r_node) do { \
(r_node) = (a_root); \
if ((r_node) != &(a_rbt)->rbt_nil) { \
for (; rbtn_right_get(a_type, a_field, (r_node)) != \
&(a_rbt)->rbt_nil; (r_node) = rbtn_right_get(a_type, a_field, \
(r_node))) { \
} \
} \
} while (0)
#define rbtn_rotate_left(a_type, a_field, a_node, r_node) do { \
(r_node) = rbtn_right_get(a_type, a_field, (a_node)); \
rbtn_right_set(a_type, a_field, (a_node), \
rbtn_left_get(a_type, a_field, (r_node))); \
rbtn_left_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
#define rbtn_rotate_right(a_type, a_field, a_node, r_node) do { \
(r_node) = rbtn_left_get(a_type, a_field, (a_node)); \
rbtn_left_set(a_type, a_field, (a_node), \
rbtn_right_get(a_type, a_field, (r_node))); \
rbtn_right_set(a_type, a_field, (r_node), (a_node)); \
} while (0)
/*
* The rb_proto() macro generates function prototypes that correspond to the
* functions generated by an equivalently parameterized call to rb_gen().
*/
#define rb_proto(a_attr, a_prefix, a_rbt_type, a_type) \
a_attr void \
a_prefix##new(a_rbt_type *rbtree); \
a_attr a_type * \
a_prefix##first(a_rbt_type *rbtree); \
a_attr a_type * \
a_prefix##last(a_rbt_type *rbtree); \
a_attr a_type * \
a_prefix##next(a_rbt_type *rbtree, a_type *node); \
a_attr a_type * \
a_prefix##prev(a_rbt_type *rbtree, a_type *node); \
a_attr a_type * \
a_prefix##search(a_rbt_type *rbtree, a_type *key); \
a_attr a_type * \
a_prefix##nsearch(a_rbt_type *rbtree, a_type *key); \
a_attr a_type * \
a_prefix##psearch(a_rbt_type *rbtree, a_type *key); \
a_attr void \
a_prefix##insert(a_rbt_type *rbtree, a_type *node); \
a_attr void \
a_prefix##remove(a_rbt_type *rbtree, a_type *node); \
a_attr a_type * \
a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
a_rbt_type *, a_type *, void *), void *arg); \
a_attr a_type * \
a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg);
/*
* The rb_gen() macro generates a type-specific red-black tree implementation,
* based on the above cpp macros.
*
* Arguments:
*
* a_attr : Function attribute for generated functions (ex: static).
* a_prefix : Prefix for generated functions (ex: ex_).
* a_rb_type : Type for red-black tree data structure (ex: ex_t).
* a_type : Type for red-black tree node data structure (ex: ex_node_t).
* a_field : Name of red-black tree node linkage (ex: ex_link).
* a_cmp : Node comparison function name, with the following prototype:
* int (a_cmp *)(a_type *a_node, a_type *a_other);
* ^^^^^^
* or a_key
* Interpretation of comparision function return values:
* -1 : a_node < a_other
* 0 : a_node == a_other
* 1 : a_node > a_other
* In all cases, the a_node or a_key macro argument is the first
* argument to the comparison function, which makes it possible
* to write comparison functions that treat the first argument
* specially.
*
* Assuming the following setup:
*
* typedef struct ex_node_s ex_node_t;
* struct ex_node_s {
* rb_node(ex_node_t) ex_link;
* };
* typedef rb_tree(ex_node_t) ex_t;
* rb_gen(static, ex_, ex_t, ex_node_t, ex_link, ex_cmp)
*
* The following API is generated:
*
* static void
* ex_new(ex_t *extree);
* Description: Initialize a red-black tree structure.
* Args:
* extree: Pointer to an uninitialized red-black tree object.
*
* static ex_node_t *
* ex_first(ex_t *extree);
* static ex_node_t *
* ex_last(ex_t *extree);
* Description: Get the first/last node in extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* Ret: First/last node in extree, or NULL if extree is empty.
*
* static ex_node_t *
* ex_next(ex_t *extree, ex_node_t *node);
* static ex_node_t *
* ex_prev(ex_t *extree, ex_node_t *node);
* Description: Get node's successor/predecessor.
* Args:
* extree: Pointer to an initialized red-black tree object.
* node : A node in extree.
* Ret: node's successor/predecessor in extree, or NULL if node is
* last/first.
*
* static ex_node_t *
* ex_search(ex_t *extree, ex_node_t *key);
* Description: Search for node that matches key.
* Args:
* extree: Pointer to an initialized red-black tree object.
* key : Search key.
* Ret: Node in extree that matches key, or NULL if no match.
*
* static ex_node_t *
* ex_nsearch(ex_t *extree, ex_node_t *key);
* static ex_node_t *
* ex_psearch(ex_t *extree, ex_node_t *key);
* Description: Search for node that matches key. If no match is found,
* return what would be key's successor/predecessor, were
* key in extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* key : Search key.
* Ret: Node in extree that matches key, or if no match, hypothetical
* node's successor/predecessor (NULL if no successor/predecessor).
*
* static void
* ex_insert(ex_t *extree, ex_node_t *node);
* Description: Insert node into extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* node : Node to be inserted into extree.
*
* static void
* ex_remove(ex_t *extree, ex_node_t *node);
* Description: Remove node from extree.
* Args:
* extree: Pointer to an initialized red-black tree object.
* node : Node in extree to be removed.
*
* static ex_node_t *
* ex_iter(ex_t *extree, ex_node_t *start, ex_node_t *(*cb)(ex_t *,
* ex_node_t *, void *), void *arg);
* static ex_node_t *
* ex_reverse_iter(ex_t *extree, ex_node_t *start, ex_node *(*cb)(ex_t *,
* ex_node_t *, void *), void *arg);
* Description: Iterate forward/backward over extree, starting at node.
* If extree is modified, iteration must be immediately
* terminated by the callback function that causes the
* modification.
* Args:
* extree: Pointer to an initialized red-black tree object.
* start : Node at which to start iteration, or NULL to start at
* first/last node.
* cb : Callback function, which is called for each node during
* iteration. Under normal circumstances the callback function
* should return NULL, which causes iteration to continue. If a
* callback function returns non-NULL, iteration is immediately
* terminated and the non-NULL return value is returned by the
* iterator. This is useful for re-starting iteration after
* modifying extree.
* arg : Opaque pointer passed to cb().
* Ret: NULL if iteration completed, or the non-NULL callback return value
* that caused termination of the iteration.
*/
#define rb_gen(a_attr, a_prefix, a_rbt_type, a_type, a_field, a_cmp) \
a_attr void \
a_prefix##new(a_rbt_type *rbtree) { \
rb_new(a_type, a_field, rbtree); \
} \
a_attr a_type * \
a_prefix##first(a_rbt_type *rbtree) { \
a_type *ret; \
rbtn_first(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##last(a_rbt_type *rbtree) { \
a_type *ret; \
rbtn_last(a_type, a_field, rbtree, rbtree->rbt_root, ret); \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##next(a_rbt_type *rbtree, a_type *node) { \
a_type *ret; \
if (rbtn_right_get(a_type, a_field, node) != &rbtree->rbt_nil) { \
rbtn_first(a_type, a_field, rbtree, rbtn_right_get(a_type, \
a_field, node), ret); \
} else { \
a_type *tnode = rbtree->rbt_root; \
assert(tnode != &rbtree->rbt_nil); \
ret = &rbtree->rbt_nil; \
while (true) { \
int cmp = (a_cmp)(node, tnode); \
if (cmp < 0) { \
ret = tnode; \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
break; \
} \
assert(tnode != &rbtree->rbt_nil); \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##prev(a_rbt_type *rbtree, a_type *node) { \
a_type *ret; \
if (rbtn_left_get(a_type, a_field, node) != &rbtree->rbt_nil) { \
rbtn_last(a_type, a_field, rbtree, rbtn_left_get(a_type, \
a_field, node), ret); \
} else { \
a_type *tnode = rbtree->rbt_root; \
assert(tnode != &rbtree->rbt_nil); \
ret = &rbtree->rbt_nil; \
while (true) { \
int cmp = (a_cmp)(node, tnode); \
if (cmp < 0) { \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
ret = tnode; \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
break; \
} \
assert(tnode != &rbtree->rbt_nil); \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##search(a_rbt_type *rbtree, a_type *key) { \
a_type *ret; \
int cmp; \
ret = rbtree->rbt_root; \
while (ret != &rbtree->rbt_nil \
&& (cmp = (a_cmp)(key, ret)) != 0) { \
if (cmp < 0) { \
ret = rbtn_left_get(a_type, a_field, ret); \
} else { \
ret = rbtn_right_get(a_type, a_field, ret); \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##nsearch(a_rbt_type *rbtree, a_type *key) { \
a_type *ret; \
a_type *tnode = rbtree->rbt_root; \
ret = &rbtree->rbt_nil; \
while (tnode != &rbtree->rbt_nil) { \
int cmp = (a_cmp)(key, tnode); \
if (cmp < 0) { \
ret = tnode; \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
ret = tnode; \
break; \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##psearch(a_rbt_type *rbtree, a_type *key) { \
a_type *ret; \
a_type *tnode = rbtree->rbt_root; \
ret = &rbtree->rbt_nil; \
while (tnode != &rbtree->rbt_nil) { \
int cmp = (a_cmp)(key, tnode); \
if (cmp < 0) { \
tnode = rbtn_left_get(a_type, a_field, tnode); \
} else if (cmp > 0) { \
ret = tnode; \
tnode = rbtn_right_get(a_type, a_field, tnode); \
} else { \
ret = tnode; \
break; \
} \
} \
if (ret == &rbtree->rbt_nil) { \
ret = (NULL); \
} \
return (ret); \
} \
a_attr void \
a_prefix##insert(a_rbt_type *rbtree, a_type *node) { \
struct { \
a_type *node; \
int cmp; \
} path[sizeof(void *) << 4], *pathp; \
rbt_node_new(a_type, a_field, rbtree, node); \
/* Wind. */ \
path->node = rbtree->rbt_root; \
for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \
int cmp = pathp->cmp = a_cmp(node, pathp->node); \
assert(cmp != 0); \
if (cmp < 0) { \
pathp[1].node = rbtn_left_get(a_type, a_field, \
pathp->node); \
} else { \
pathp[1].node = rbtn_right_get(a_type, a_field, \
pathp->node); \
} \
} \
pathp->node = node; \
/* Unwind. */ \
for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
a_type *cnode = pathp->node; \
if (pathp->cmp < 0) { \
a_type *left = pathp[1].node; \
rbtn_left_set(a_type, a_field, cnode, left); \
if (rbtn_red_get(a_type, a_field, left)) { \
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
if (rbtn_red_get(a_type, a_field, leftleft)) { \
/* Fix up 4-node. */ \
a_type *tnode; \
rbtn_black_set(a_type, a_field, leftleft); \
rbtn_rotate_right(a_type, a_field, cnode, tnode); \
cnode = tnode; \
} \
} else { \
return; \
} \
} else { \
a_type *right = pathp[1].node; \
rbtn_right_set(a_type, a_field, cnode, right); \
if (rbtn_red_get(a_type, a_field, right)) { \
a_type *left = rbtn_left_get(a_type, a_field, cnode); \
if (rbtn_red_get(a_type, a_field, left)) { \
/* Split 4-node. */ \
rbtn_black_set(a_type, a_field, left); \
rbtn_black_set(a_type, a_field, right); \
rbtn_red_set(a_type, a_field, cnode); \
} else { \
/* Lean left. */ \
a_type *tnode; \
bool tred = rbtn_red_get(a_type, a_field, cnode); \
rbtn_rotate_left(a_type, a_field, cnode, tnode); \
rbtn_color_set(a_type, a_field, tnode, tred); \
rbtn_red_set(a_type, a_field, cnode); \
cnode = tnode; \
} \
} else { \
return; \
} \
} \
pathp->node = cnode; \
} \
/* Set root, and make it black. */ \
rbtree->rbt_root = path->node; \
rbtn_black_set(a_type, a_field, rbtree->rbt_root); \
} \
a_attr void \
a_prefix##remove(a_rbt_type *rbtree, a_type *node) { \
struct { \
a_type *node; \
int cmp; \
} *pathp, *nodep, path[sizeof(void *) << 4]; \
/* Wind. */ \
nodep = NULL; /* Silence compiler warning. */ \
path->node = rbtree->rbt_root; \
for (pathp = path; pathp->node != &rbtree->rbt_nil; pathp++) { \
int cmp = pathp->cmp = a_cmp(node, pathp->node); \
if (cmp < 0) { \
pathp[1].node = rbtn_left_get(a_type, a_field, \
pathp->node); \
} else { \
pathp[1].node = rbtn_right_get(a_type, a_field, \
pathp->node); \
if (cmp == 0) { \
/* Find node's successor, in preparation for swap. */ \
pathp->cmp = 1; \
nodep = pathp; \
for (pathp++; pathp->node != &rbtree->rbt_nil; \
pathp++) { \
pathp->cmp = -1; \
pathp[1].node = rbtn_left_get(a_type, a_field, \
pathp->node); \
} \
break; \
} \
} \
} \
assert(nodep->node == node); \
pathp--; \
if (pathp->node != node) { \
/* Swap node with its successor. */ \
bool tred = rbtn_red_get(a_type, a_field, pathp->node); \
rbtn_color_set(a_type, a_field, pathp->node, \
rbtn_red_get(a_type, a_field, node)); \
rbtn_left_set(a_type, a_field, pathp->node, \
rbtn_left_get(a_type, a_field, node)); \
/* If node's successor is its right child, the following code */\
/* will do the wrong thing for the right child pointer. */\
/* However, it doesn't matter, because the pointer will be */\
/* properly set when the successor is pruned. */\
rbtn_right_set(a_type, a_field, pathp->node, \
rbtn_right_get(a_type, a_field, node)); \
rbtn_color_set(a_type, a_field, node, tred); \
/* The pruned leaf node's child pointers are never accessed */\
/* again, so don't bother setting them to nil. */\
nodep->node = pathp->node; \
pathp->node = node; \
if (nodep == path) { \
rbtree->rbt_root = nodep->node; \
} else { \
if (nodep[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, nodep[-1].node, \
nodep->node); \
} else { \
rbtn_right_set(a_type, a_field, nodep[-1].node, \
nodep->node); \
} \
} \
} else { \
a_type *left = rbtn_left_get(a_type, a_field, node); \
if (left != &rbtree->rbt_nil) { \
/* node has no successor, but it has a left child. */\
/* Splice node out, without losing the left child. */\
assert(rbtn_red_get(a_type, a_field, node) == false); \
assert(rbtn_red_get(a_type, a_field, left)); \
rbtn_black_set(a_type, a_field, left); \
if (pathp == path) { \
rbtree->rbt_root = left; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
left); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
left); \
} \
} \
return; \
} else if (pathp == path) { \
/* The tree only contained one node. */ \
rbtree->rbt_root = &rbtree->rbt_nil; \
return; \
} \
} \
if (rbtn_red_get(a_type, a_field, pathp->node)) { \
/* Prune red node, which requires no fixup. */ \
assert(pathp[-1].cmp < 0); \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
&rbtree->rbt_nil); \
return; \
} \
/* The node to be pruned is black, so unwind until balance is */\
/* restored. */\
pathp->node = &rbtree->rbt_nil; \
for (pathp--; (uintptr_t)pathp >= (uintptr_t)path; pathp--) { \
assert(pathp->cmp != 0); \
if (pathp->cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp->node, \
pathp[1].node); \
assert(rbtn_red_get(a_type, a_field, pathp[1].node) \
== false); \
if (rbtn_red_get(a_type, a_field, pathp->node)) { \
a_type *right = rbtn_right_get(a_type, a_field, \
pathp->node); \
a_type *rightleft = rbtn_left_get(a_type, a_field, \
right); \
a_type *tnode; \
if (rbtn_red_get(a_type, a_field, rightleft)) { \
/* In the following diagrams, ||, //, and \\ */\
/* indicate the path to the removed node. */\
/* */\
/* || */\
/* pathp(r) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (r) */\
/* */\
rbtn_black_set(a_type, a_field, pathp->node); \
rbtn_rotate_right(a_type, a_field, right, tnode); \
rbtn_right_set(a_type, a_field, pathp->node, tnode);\
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
} else { \
/* || */\
/* pathp(r) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (b) */\
/* */\
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
} \
/* Balance restored, but rotation modified subtree */\
/* root. */\
assert((uintptr_t)pathp > (uintptr_t)path); \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
tnode); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
tnode); \
} \
return; \
} else { \
a_type *right = rbtn_right_get(a_type, a_field, \
pathp->node); \
a_type *rightleft = rbtn_left_get(a_type, a_field, \
right); \
if (rbtn_red_get(a_type, a_field, rightleft)) { \
/* || */\
/* pathp(b) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (r) */\
a_type *tnode; \
rbtn_black_set(a_type, a_field, rightleft); \
rbtn_rotate_right(a_type, a_field, right, tnode); \
rbtn_right_set(a_type, a_field, pathp->node, tnode);\
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
/* Balance restored, but rotation modified */\
/* subree root, which may actually be the tree */\
/* root. */\
if (pathp == path) { \
/* Set root. */ \
rbtree->rbt_root = tnode; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, \
pathp[-1].node, tnode); \
} else { \
rbtn_right_set(a_type, a_field, \
pathp[-1].node, tnode); \
} \
} \
return; \
} else { \
/* || */\
/* pathp(b) */\
/* // \ */\
/* (b) (b) */\
/* / */\
/* (b) */\
a_type *tnode; \
rbtn_red_set(a_type, a_field, pathp->node); \
rbtn_rotate_left(a_type, a_field, pathp->node, \
tnode); \
pathp->node = tnode; \
} \
} \
} else { \
a_type *left; \
rbtn_right_set(a_type, a_field, pathp->node, \
pathp[1].node); \
left = rbtn_left_get(a_type, a_field, pathp->node); \
if (rbtn_red_get(a_type, a_field, left)) { \
a_type *tnode; \
a_type *leftright = rbtn_right_get(a_type, a_field, \
left); \
a_type *leftrightleft = rbtn_left_get(a_type, a_field, \
leftright); \
if (rbtn_red_get(a_type, a_field, leftrightleft)) { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (r) (b) */\
/* \ */\
/* (b) */\
/* / */\
/* (r) */\
a_type *unode; \
rbtn_black_set(a_type, a_field, leftrightleft); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
unode); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
rbtn_right_set(a_type, a_field, unode, tnode); \
rbtn_rotate_left(a_type, a_field, unode, tnode); \
} else { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (r) (b) */\
/* \ */\
/* (b) */\
/* / */\
/* (b) */\
assert(leftright != &rbtree->rbt_nil); \
rbtn_red_set(a_type, a_field, leftright); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
rbtn_black_set(a_type, a_field, tnode); \
} \
/* Balance restored, but rotation modified subtree */\
/* root, which may actually be the tree root. */\
if (pathp == path) { \
/* Set root. */ \
rbtree->rbt_root = tnode; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
tnode); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
tnode); \
} \
} \
return; \
} else if (rbtn_red_get(a_type, a_field, pathp->node)) { \
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
if (rbtn_red_get(a_type, a_field, leftleft)) { \
/* || */\
/* pathp(r) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (r) */\
a_type *tnode; \
rbtn_black_set(a_type, a_field, pathp->node); \
rbtn_red_set(a_type, a_field, left); \
rbtn_black_set(a_type, a_field, leftleft); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
/* Balance restored, but rotation modified */\
/* subtree root. */\
assert((uintptr_t)pathp > (uintptr_t)path); \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, pathp[-1].node, \
tnode); \
} else { \
rbtn_right_set(a_type, a_field, pathp[-1].node, \
tnode); \
} \
return; \
} else { \
/* || */\
/* pathp(r) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (b) */\
rbtn_red_set(a_type, a_field, left); \
rbtn_black_set(a_type, a_field, pathp->node); \
/* Balance restored. */ \
return; \
} \
} else { \
a_type *leftleft = rbtn_left_get(a_type, a_field, left);\
if (rbtn_red_get(a_type, a_field, leftleft)) { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (r) */\
a_type *tnode; \
rbtn_black_set(a_type, a_field, leftleft); \
rbtn_rotate_right(a_type, a_field, pathp->node, \
tnode); \
/* Balance restored, but rotation modified */\
/* subtree root, which may actually be the tree */\
/* root. */\
if (pathp == path) { \
/* Set root. */ \
rbtree->rbt_root = tnode; \
} else { \
if (pathp[-1].cmp < 0) { \
rbtn_left_set(a_type, a_field, \
pathp[-1].node, tnode); \
} else { \
rbtn_right_set(a_type, a_field, \
pathp[-1].node, tnode); \
} \
} \
return; \
} else { \
/* || */\
/* pathp(b) */\
/* / \\ */\
/* (b) (b) */\
/* / */\
/* (b) */\
rbtn_red_set(a_type, a_field, left); \
} \
} \
} \
} \
/* Set root. */ \
rbtree->rbt_root = path->node; \
assert(rbtn_red_get(a_type, a_field, rbtree->rbt_root) == false); \
} \
a_attr a_type * \
a_prefix##iter_recurse(a_rbt_type *rbtree, a_type *node, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
if (node == &rbtree->rbt_nil) { \
return (&rbtree->rbt_nil); \
} else { \
a_type *ret; \
if ((ret = a_prefix##iter_recurse(rbtree, rbtn_left_get(a_type, \
a_field, node), cb, arg)) != &rbtree->rbt_nil \
|| (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##iter_start(a_rbt_type *rbtree, a_type *start, a_type *node, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
int cmp = a_cmp(start, node); \
if (cmp < 0) { \
a_type *ret; \
if ((ret = a_prefix##iter_start(rbtree, start, \
rbtn_left_get(a_type, a_field, node), cb, arg)) != \
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
a_field, node), cb, arg)); \
} else if (cmp > 0) { \
return (a_prefix##iter_start(rbtree, start, \
rbtn_right_get(a_type, a_field, node), cb, arg)); \
} else { \
a_type *ret; \
if ((ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##iter_recurse(rbtree, rbtn_right_get(a_type, \
a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##iter(a_rbt_type *rbtree, a_type *start, a_type *(*cb)( \
a_rbt_type *, a_type *, void *), void *arg) { \
a_type *ret; \
if (start != NULL) { \
ret = a_prefix##iter_start(rbtree, start, rbtree->rbt_root, \
cb, arg); \
} else { \
ret = a_prefix##iter_recurse(rbtree, rbtree->rbt_root, cb, arg);\
} \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
} \
a_attr a_type * \
a_prefix##reverse_iter_recurse(a_rbt_type *rbtree, a_type *node, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
if (node == &rbtree->rbt_nil) { \
return (&rbtree->rbt_nil); \
} else { \
a_type *ret; \
if ((ret = a_prefix##reverse_iter_recurse(rbtree, \
rbtn_right_get(a_type, a_field, node), cb, arg)) != \
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##reverse_iter_recurse(rbtree, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##reverse_iter_start(a_rbt_type *rbtree, a_type *start, \
a_type *node, a_type *(*cb)(a_rbt_type *, a_type *, void *), \
void *arg) { \
int cmp = a_cmp(start, node); \
if (cmp > 0) { \
a_type *ret; \
if ((ret = a_prefix##reverse_iter_start(rbtree, start, \
rbtn_right_get(a_type, a_field, node), cb, arg)) != \
&rbtree->rbt_nil || (ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##reverse_iter_recurse(rbtree, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} else if (cmp < 0) { \
return (a_prefix##reverse_iter_start(rbtree, start, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} else { \
a_type *ret; \
if ((ret = cb(rbtree, node, arg)) != NULL) { \
return (ret); \
} \
return (a_prefix##reverse_iter_recurse(rbtree, \
rbtn_left_get(a_type, a_field, node), cb, arg)); \
} \
} \
a_attr a_type * \
a_prefix##reverse_iter(a_rbt_type *rbtree, a_type *start, \
a_type *(*cb)(a_rbt_type *, a_type *, void *), void *arg) { \
a_type *ret; \
if (start != NULL) { \
ret = a_prefix##reverse_iter_start(rbtree, start, \
rbtree->rbt_root, cb, arg); \
} else { \
ret = a_prefix##reverse_iter_recurse(rbtree, rbtree->rbt_root, \
cb, arg); \
} \
if (ret == &rbtree->rbt_nil) { \
ret = NULL; \
} \
return (ret); \
}
#endif /* RB_H_ */
/*
* This radix tree implementation is tailored to the singular purpose of
* tracking which chunks are currently owned by jemalloc. This functionality
* is mandatory for OS X, where jemalloc must be able to respond to object
* ownership queries.
*
*******************************************************************************
*/
#ifdef JEMALLOC_H_TYPES
typedef struct rtree_s rtree_t;
/*
* Size of each radix tree node (must be a power of 2). This impacts tree
* depth.
*/
#if (LG_SIZEOF_PTR == 2)
# define RTREE_NODESIZE (1U << 14)
#else
# define RTREE_NODESIZE CACHELINE
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
struct rtree_s {
malloc_mutex_t mutex;
void **root;
unsigned height;
unsigned level2bits[1]; /* Dynamically sized. */
};
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
rtree_t *rtree_new(unsigned bits);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifndef JEMALLOC_ENABLE_INLINE
#ifndef JEMALLOC_DEBUG
void *rtree_get_locked(rtree_t *rtree, uintptr_t key);
#endif
void *rtree_get(rtree_t *rtree, uintptr_t key);
bool rtree_set(rtree_t *rtree, uintptr_t key, void *val);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_RTREE_C_))
#define RTREE_GET_GENERATE(f) \
/* The least significant bits of the key are ignored. */ \
JEMALLOC_INLINE void * \
f(rtree_t *rtree, uintptr_t key) \
{ \
void *ret; \
uintptr_t subkey; \
unsigned i, lshift, height, bits; \
void **node, **child; \
\
RTREE_LOCK(&rtree->mutex); \
for (i = lshift = 0, height = rtree->height, node = rtree->root;\
i < height - 1; \
i++, lshift += bits, node = child) { \
bits = rtree->level2bits[i]; \
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR + \
3)) - bits); \
child = (void**)node[subkey]; \
if (child == NULL) { \
RTREE_UNLOCK(&rtree->mutex); \
return (NULL); \
} \
} \
\
/* \
* node is a leaf, so it contains values rather than node \
* pointers. \
*/ \
bits = rtree->level2bits[i]; \
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR+3)) - \
bits); \
ret = node[subkey]; \
RTREE_UNLOCK(&rtree->mutex); \
\
RTREE_GET_VALIDATE \
return (ret); \
}
#ifdef JEMALLOC_DEBUG
# define RTREE_LOCK(l) malloc_mutex_lock(l)
# define RTREE_UNLOCK(l) malloc_mutex_unlock(l)
# define RTREE_GET_VALIDATE
RTREE_GET_GENERATE(rtree_get_locked)
# undef RTREE_LOCK
# undef RTREE_UNLOCK
# undef RTREE_GET_VALIDATE
#endif
#define RTREE_LOCK(l)
#define RTREE_UNLOCK(l)
#ifdef JEMALLOC_DEBUG
/*
* Suppose that it were possible for a jemalloc-allocated chunk to be
* munmap()ped, followed by a different allocator in another thread re-using
* overlapping virtual memory, all without invalidating the cached rtree
* value. The result would be a false positive (the rtree would claim that
* jemalloc owns memory that it had actually discarded). This scenario
* seems impossible, but the following assertion is a prudent sanity check.
*/
# define RTREE_GET_VALIDATE \
assert(rtree_get_locked(rtree, key) == ret);
#else
# define RTREE_GET_VALIDATE
#endif
RTREE_GET_GENERATE(rtree_get)
#undef RTREE_LOCK
#undef RTREE_UNLOCK
#undef RTREE_GET_VALIDATE
JEMALLOC_INLINE bool
rtree_set(rtree_t *rtree, uintptr_t key, void *val)
{
uintptr_t subkey;
unsigned i, lshift, height, bits;
void **node, **child;
malloc_mutex_lock(&rtree->mutex);
for (i = lshift = 0, height = rtree->height, node = rtree->root;
i < height - 1;
i++, lshift += bits, node = child) {
bits = rtree->level2bits[i];
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR+3)) -
bits);
child = (void**)node[subkey];
if (child == NULL) {
child = (void**)base_alloc(sizeof(void *) <<
rtree->level2bits[i+1]);
if (child == NULL) {
malloc_mutex_unlock(&rtree->mutex);
return (true);
}
memset(child, 0, sizeof(void *) <<
rtree->level2bits[i+1]);
node[subkey] = child;
}
}
/* node is a leaf, so it contains values rather than node pointers. */
bits = rtree->level2bits[i];
subkey = (key << lshift) >> ((ZU(1) << (LG_SIZEOF_PTR+3)) - bits);
node[subkey] = val;
malloc_mutex_unlock(&rtree->mutex);
return (false);
}
#endif
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
/******************************************************************************/
#ifdef JEMALLOC_H_TYPES
#define UMAX2S_BUFSIZE 65
#ifdef JEMALLOC_STATS
typedef struct tcache_bin_stats_s tcache_bin_stats_t;
typedef struct malloc_bin_stats_s malloc_bin_stats_t;
typedef struct malloc_large_stats_s malloc_large_stats_t;
typedef struct arena_stats_s arena_stats_t;
#endif
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
typedef struct chunk_stats_s chunk_stats_t;
#endif
#endif /* JEMALLOC_H_TYPES */
/******************************************************************************/
#ifdef JEMALLOC_H_STRUCTS
#ifdef JEMALLOC_STATS
#ifdef JEMALLOC_TCACHE
struct tcache_bin_stats_s {
/*
* Number of allocation requests that corresponded to the size of this
* bin.
*/
uint64_t nrequests;
};
#endif
struct malloc_bin_stats_s {
/*
* Current number of bytes allocated, including objects currently
* cached by tcache.
*/
size_t allocated;
/*
* Total number of allocation/deallocation requests served directly by
* the bin. Note that tcache may allocate an object, then recycle it
* many times, resulting many increments to nrequests, but only one
* each to nmalloc and ndalloc.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/*
* Number of allocation requests that correspond to the size of this
* bin. This includes requests served by tcache, though tcache only
* periodically merges into this counter.
*/
uint64_t nrequests;
#ifdef JEMALLOC_TCACHE
/* Number of tcache fills from this bin. */
uint64_t nfills;
/* Number of tcache flushes to this bin. */
uint64_t nflushes;
#endif
/* Total number of runs created for this bin's size class. */
uint64_t nruns;
/*
* Total number of runs reused by extracting them from the runs tree for
* this bin's size class.
*/
uint64_t reruns;
/* High-water mark for this bin. */
size_t highruns;
/* Current number of runs in this bin. */
size_t curruns;
};
struct malloc_large_stats_s {
/*
* Total number of allocation/deallocation requests served directly by
* the arena. Note that tcache may allocate an object, then recycle it
* many times, resulting many increments to nrequests, but only one
* each to nmalloc and ndalloc.
*/
uint64_t nmalloc;
uint64_t ndalloc;
/*
* Number of allocation requests that correspond to this size class.
* This includes requests served by tcache, though tcache only
* periodically merges into this counter.
*/
uint64_t nrequests;
/* High-water mark for this size class. */
size_t highruns;
/* Current number of runs of this size class. */
size_t curruns;
};
struct arena_stats_s {
/* Number of bytes currently mapped. */
size_t mapped;
/*
* Total number of purge sweeps, total number of madvise calls made,
* and total pages purged in order to keep dirty unused memory under
* control.
*/
uint64_t npurge;
uint64_t nmadvise;
uint64_t purged;
/* Per-size-category statistics. */
size_t allocated_large;
uint64_t nmalloc_large;
uint64_t ndalloc_large;
uint64_t nrequests_large;
/*
* One element for each possible size class, including sizes that
* overlap with bin size classes. This is necessary because ipalloc()
* sometimes has to use such large objects in order to assure proper
* alignment.
*/
malloc_large_stats_t *lstats;
};
#endif /* JEMALLOC_STATS */
#if (defined(JEMALLOC_STATS) || defined(JEMALLOC_PROF))
struct chunk_stats_s {
# ifdef JEMALLOC_STATS
/* Number of chunks that were allocated. */
uint64_t nchunks;
# endif
/* High-water mark for number of chunks allocated. */
size_t highchunks;
/*
* Current number of chunks allocated. This value isn't maintained for
* any other purpose, so keep track of it in order to be able to set
* highchunks.
*/
size_t curchunks;
};
#endif /* JEMALLOC_STATS */
#endif /* JEMALLOC_H_STRUCTS */
/******************************************************************************/
#ifdef JEMALLOC_H_EXTERNS
extern bool opt_stats_print;
#ifdef JEMALLOC_STATS
extern size_t stats_cactive;
#endif
char *u2s(uint64_t x, unsigned base, char *s);
#ifdef JEMALLOC_STATS
void malloc_cprintf(void (*write)(void *, const char *), void *cbopaque,
const char *format, ...) JEMALLOC_ATTR(format(printf, 3, 4));
void malloc_printf(const char *format, ...)
JEMALLOC_ATTR(format(printf, 1, 2));
#endif
void stats_print(void (*write)(void *, const char *), void *cbopaque,
const char *opts);
#endif /* JEMALLOC_H_EXTERNS */
/******************************************************************************/
#ifdef JEMALLOC_H_INLINES
#ifdef JEMALLOC_STATS
#ifndef JEMALLOC_ENABLE_INLINE
size_t stats_cactive_get(void);
void stats_cactive_add(size_t size);
void stats_cactive_sub(size_t size);
#endif
#if (defined(JEMALLOC_ENABLE_INLINE) || defined(JEMALLOC_STATS_C_))
JEMALLOC_INLINE size_t
stats_cactive_get(void)
{
return (atomic_read_z(&stats_cactive));
}
JEMALLOC_INLINE void
stats_cactive_add(size_t size)
{
atomic_add_z(&stats_cactive, size);
}
JEMALLOC_INLINE void
stats_cactive_sub(size_t size)
{
atomic_sub_z(&stats_cactive, size);
}
#endif
#endif /* JEMALLOC_STATS */
#endif /* JEMALLOC_H_INLINES */
/******************************************************************************/
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment