Commit fdaab023 authored by yoav's avatar yoav
Browse files

Merge remote-tracking branch 'upstream/unstable' into unstable

parents 4930d903 9caa1ae9
......@@ -682,6 +682,20 @@ set-max-intset-entries 512
zset-max-ziplist-entries 128
zset-max-ziplist-value 64
# HyperLogLog sparse representation bytes limit. The limit includes the
# 16 bytes header. When an HyperLogLog using the sparse representation crosses
# this limit, it is convereted into the dense representation.
#
# A value greater than 16000 is totally useless, since at that point the
# dense representation is more memory efficient.
#
# The suggested value is ~ 3000 in order to have the benefits of
# the space efficient encoding without slowing down too much PFADD,
# which is O(N) with the sparse encoding. Thev value can be raised to
# ~ 10000 when CPU is not a concern, but space is, and the data set is
# composed of many HyperLogLogs with cardinality in the 0 - 15000 range.
hll-sparse-max-bytes 3000
# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation Redis uses (see dict.c)
......
......@@ -1178,8 +1178,9 @@ void clusterUpdateSlotsConfigWith(clusterNode *sender, uint64_t senderConfigEpoc
"I've still keys about this slot! "
"Putting the slot in IMPORTING state. "
"Please run the 'redis-trib fix' command.",
j, sender->name, senderConfigEpoch,
myself->configEpoch);
j, sender->name,
(unsigned long long) senderConfigEpoch,
(unsigned long long) myself->configEpoch);
server.cluster->importing_slots_from[j] = sender;
}
......
......@@ -391,6 +391,8 @@ void loadServerConfigFromString(char *config) {
server.zset_max_ziplist_entries = memtoll(argv[1], NULL);
} else if (!strcasecmp(argv[0],"zset-max-ziplist-value") && argc == 2) {
server.zset_max_ziplist_value = memtoll(argv[1], NULL);
} else if (!strcasecmp(argv[0],"hll-sparse-max-bytes") && argc == 2) {
server.hll_sparse_max_bytes = memtoll(argv[1], NULL);
} else if (!strcasecmp(argv[0],"rename-command") && argc == 3) {
struct redisCommand *cmd = lookupCommand(argv[1]);
int retval;
......@@ -765,6 +767,9 @@ void configSetCommand(redisClient *c) {
} else if (!strcasecmp(c->argv[2]->ptr,"zset-max-ziplist-value")) {
if (getLongLongFromObject(o,&ll) == REDIS_ERR || ll < 0) goto badfmt;
server.zset_max_ziplist_value = ll;
} else if (!strcasecmp(c->argv[2]->ptr,"hll-sparse-max-bytes")) {
if (getLongLongFromObject(o,&ll) == REDIS_ERR || ll < 0) goto badfmt;
server.hll_sparse_max_bytes = ll;
} else if (!strcasecmp(c->argv[2]->ptr,"lua-time-limit")) {
if (getLongLongFromObject(o,&ll) == REDIS_ERR || ll < 0) goto badfmt;
server.lua_time_limit = ll;
......@@ -974,6 +979,8 @@ void configGetCommand(redisClient *c) {
server.zset_max_ziplist_entries);
config_get_numerical_field("zset-max-ziplist-value",
server.zset_max_ziplist_value);
config_get_numerical_field("hll-sparse-max-bytes",
server.hll_sparse_max_bytes);
config_get_numerical_field("lua-time-limit",server.lua_time_limit);
config_get_numerical_field("slowlog-log-slower-than",
server.slowlog_log_slower_than);
......@@ -1773,6 +1780,7 @@ int rewriteConfig(char *path) {
rewriteConfigNumericalOption(state,"set-max-intset-entries",server.set_max_intset_entries,REDIS_SET_MAX_INTSET_ENTRIES);
rewriteConfigNumericalOption(state,"zset-max-ziplist-entries",server.zset_max_ziplist_entries,REDIS_ZSET_MAX_ZIPLIST_ENTRIES);
rewriteConfigNumericalOption(state,"zset-max-ziplist-value",server.zset_max_ziplist_value,REDIS_ZSET_MAX_ZIPLIST_VALUE);
rewriteConfigNumericalOption(state,"hll-sparse-max-bytes",server.hll_sparse_max_bytes,REDIS_DEFAULT_HLL_SPARSE_MAX_BYTES);
rewriteConfigYesNoOption(state,"activerehashing",server.activerehashing,REDIS_DEFAULT_ACTIVE_REHASHING);
rewriteConfigClientoutputbufferlimitOption(state);
rewriteConfigNumericalOption(state,"hz",server.hz,REDIS_DEFAULT_HZ);
......
......@@ -1143,7 +1143,7 @@ unsigned int getKeysInSlot(unsigned int hashslot, robj **keys, unsigned int coun
range.min = range.max = hashslot;
range.minex = range.maxex = 0;
n = zslFirstInRange(server.cluster->slots_to_keys, range);
n = zslFirstInRange(server.cluster->slots_to_keys, &range);
while(n && n->score == hashslot && count--) {
keys[j++] = n->obj;
n = n->level[0].forward;
......@@ -1161,7 +1161,7 @@ unsigned int countKeysInSlot(unsigned int hashslot) {
range.minex = range.maxex = 0;
/* Find first element in range */
zn = zslFirstInRange(zsl, range);
zn = zslFirstInRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
......@@ -1169,7 +1169,7 @@ unsigned int countKeysInSlot(unsigned int hashslot) {
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInRange(zsl, range);
zn = zslLastInRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
......
......@@ -53,42 +53,163 @@
* [2] P. Flajolet, Éric Fusy, O. Gandouet, and F. Meunier. Hyperloglog: The
* analysis of a near-optimal cardinality estimation algorithm.
*
* The representation used by Redis is the following:
* Redis uses two representations:
*
* +--------+--------+--------+------// //--+----------+------+-----+
* |11000000|22221111|33333322|55444444 .... | uint64_t | HYLL | Ver |
* +--------+--------+--------+------// //--+----------+------+-----+
* 1) A "dense" representation where every entry is represented by
* a 6-bit integer.
* 2) A "sparse" representation using run length compression suitable
* for representing HyperLogLogs with many registers set to 0 in
* a memory efficient way.
*
* The 6 bits counters are encoded one after the other starting from the
* LSB to the MSB, and using the next bytes as needed.
*
* At the end of the 16k counters, there is an additional 64 bit integer
* stored in little endian format with the latest cardinality computed that
* can be reused if the data structure was not modified since the last
* computation (this is useful because there are high probabilities that
* HLLADD operations don't modify the actual data structure and hence the
* approximated cardinality).
* HLL header
* ===
*
* Both the dense and sparse representation have a 16 byte header as follows:
*
* +------+---+-----+----------+
* | HYLL | E | N/U | Cardin. |
* +------+---+-----+----------+
*
* The first 4 bytes are a magic string set to the bytes "HYLL".
* "E" is one byte encoding, currently set to HLL_DENSE or
* HLL_SPARSE. N/U are three not used bytes.
*
* After the cached cardinality there are 4 bytes of magic set to the
* string "HYLL", and a 4 bytes version field that is reserved for
* future uses and is currently set to 0.
* The "Cardin." field is a 64 bit integer stored in little endian format
* with the latest cardinality computed that can be reused if the data
* structure was not modified since the last computation (this is useful
* because there are high probabilities that HLLADD operations don't
* modify the actual data structure and hence the approximated cardinality).
*
* When the most significant bit in the most significant byte of the cached
* cardinality is set, it means that the data structure was modified and
* we can't reuse the cached value that must be recomputed. */
* we can't reuse the cached value that must be recomputed.
*
* Dense representation
* ===
*
* The dense representation used by Redis is the following:
*
* +--------+--------+--------+------// //--+
* |11000000|22221111|33333322|55444444 .... |
* +--------+--------+--------+------// //--+
*
* The 6 bits counters are encoded one after the other starting from the
* LSB to the MSB, and using the next bytes as needed.
*
* Sparse representation
* ===
*
* The sparse representation encodes registers using a run length
* encoding composed of three opcodes, two using one byte, and one using
* of two bytes. The opcodes are called ZERO, XZERO and VAL.
*
* ZERO opcode is represented as 00xxxxxx. The 6-bit integer represented
* by the six bits 'xxxxxx', plus 1, means that there are N registers set
* to 0. This opcode can represent from 1 to 64 contiguous registers set
* to the value of 0.
*
* XZERO opcode is represented by two bytes 01xxxxxx yyyyyyyy. The 14-bit
* integer represented by the bits 'xxxxxx' as most significant bits and
* 'yyyyyyyy' as least significant bits, plus 1, means that there are N
* registers set to 0. This opcode can represent from 0 to 16384 contiguous
* registers set to the value of 0.
*
* VAL opcode is represented as 1vvvvvxx. It contains a 5-bit integer
* representing the value of a register, and a 2-bit integer representing
* the number of contiguous registers set to that value 'vvvvv'.
* To obtain the value and run length, the integers vvvvv and xx must be
* incremented by one. This opcode can represent values from 1 to 32,
* repeated from 1 to 4 times.
*
* The sparse representation can't represent registers with a value greater
* than 32, however it is very unlikely that we find such a register in an
* HLL with a cardinality where the sparse representation is still more
* memory efficient than the dense representation. When this happens the
* HLL is converted to the dense representation.
*
* The sparse representation is purely positional. For example a sparse
* representation of an empty HLL is just: XZERO:16384.
*
* An HLL having only 3 non-zero registers at position 1000, 1020, 1021
* respectively set to 2, 3, 3, is represented by the following three
* opcodes:
*
* XZERO:1000 (Registers 0-999 are set to 0)
* VAL:2,1 (1 register set to value 2, that is register 1000)
* ZERO:19 (Registers 1001-1019 set to 0)
* VAL:3,2 (2 registers set to value 3, that is registers 1020,1021)
* XZERO:15362 (Registers 1022-16383 set to 0)
*
* In the example the sparse representation used just 7 bytes instead
* of 12k in order to represent the HLL registers. In general for low
* cardinality there is a big win in terms of space efficiency, traded
* with CPU time since the sparse representation is slower to access:
*
* The following table shows average cardinality vs bytes used, 100
* samples per cardinality (when the set was not representable because
* of registers with too big value, the dense representation size was used
* as a sample).
*
* 100 267
* 200 485
* 300 678
* 400 859
* 500 1033
* 600 1205
* 700 1375
* 800 1544
* 900 1713
* 1000 1882
* 2000 3480
* 3000 4879
* 4000 6089
* 5000 7138
* 6000 8042
* 7000 8823
* 8000 9500
* 9000 10088
* 10000 10591
*
* The dense representation uses 12288 bytes, so there is a big win up to
* a cardinality of ~2000-3000. For bigger cardinalities the constant times
* involved in updating the sparse representation is not justified by the
* memory savings. The exact maximum length of the sparse representation
* when this implementation switches to the dense representation is
* configured via the define server.hll_sparse_max_bytes.
*/
struct hllhdr {
char magic[4]; /* "HYLL" */
uint8_t encoding; /* HLL_DENSE or HLL_SPARSE. */
uint8_t notused[3]; /* Reserved for future use, must be zero. */
uint8_t card[8]; /* Cached cardinality, little endian. */
uint8_t registers[]; /* Data bytes. */
};
/* The cached cardinality MSB is used to signal validity of the cached value. */
#define HLL_INVALIDATE_CACHE(hdr) (hdr)->card[0] |= (1<<7)
#define HLL_VALID_CACHE(hdr) (((hdr)->card[0] & (1<<7)) == 0)
#define REDIS_HLL_P 14 /* The greater is P, the smaller the error. */
#define REDIS_HLL_REGISTERS (1<<REDIS_HLL_P) /* With P=14, 16384 registers. */
#define REDIS_HLL_P_MASK (REDIS_HLL_REGISTERS-1) /* Mask to index register. */
#define REDIS_HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
#define REDIS_HLL_REGISTER_MAX ((1<<REDIS_HLL_BITS)-1)
/* Note: REDIS_HLL_SIZE define has a final "+8" since we store a 64 bit
* integer at the end of the HyperLogLog structure to cache the cardinality. */
#define REDIS_HLL_SIZE ((REDIS_HLL_REGISTERS*REDIS_HLL_BITS+7)/8)+8+8
#define HLL_P 14 /* The greater is P, the smaller the error. */
#define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
#define HLL_P_MASK (HLL_REGISTERS-1) /* Mask to index register. */
#define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
#define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
#define HLL_HDR_SIZE sizeof(struct hllhdr)
#define HLL_DENSE_SIZE (HLL_HDR_SIZE+((HLL_REGISTERS*HLL_BITS+7)/8))
#define HLL_DENSE 0 /* Dense encoding. */
#define HLL_SPARSE 1 /* Sparse encoding. */
#define HLL_RAW 255 /* Only used internally, never exposed. */
#define HLL_MAX_ENCODING 1
static char *invalid_hll_err = "-INVALIDOBJ Corrupted HLL object detected\r\n";
/* =========================== Low level bit macros ========================= */
/* We need to get and set 6 bit counters in an array of 8 bit bytes.
/* Macros to access the dense representation.
*
* We need to get and set 6 bit counters in an array of 8 bit bytes.
* We use macros to make sure the code is inlined since speed is critical
* especially in order to compute the approximated cardinality in
* HLLCOUNT where we need to access all the registers at once.
......@@ -213,30 +334,57 @@
/* Store the value of the register at position 'regnum' into variable 'target'.
* 'p' is an array of unsigned bytes. */
#define HLL_GET_REGISTER(target,p,regnum) do { \
#define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
uint8_t *_p = (uint8_t*) p; \
unsigned long _byte = regnum*REDIS_HLL_BITS/8; \
unsigned long _fb = regnum*REDIS_HLL_BITS&7; \
unsigned long _byte = regnum*HLL_BITS/8; \
unsigned long _fb = regnum*HLL_BITS&7; \
unsigned long _fb8 = 8 - _fb; \
unsigned long b0 = _p[_byte]; \
unsigned long b1 = _p[_byte+1]; \
target = ((b0 >> _fb) | (b1 << _fb8)) & REDIS_HLL_REGISTER_MAX; \
target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
} while(0)
/* Set the value of the register at position 'regnum' to 'val'.
* 'p' is an array of unsigned bytes. */
#define HLL_SET_REGISTER(p,regnum,val) do { \
#define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
uint8_t *_p = (uint8_t*) p; \
unsigned long _byte = regnum*REDIS_HLL_BITS/8; \
unsigned long _fb = regnum*REDIS_HLL_BITS&7; \
unsigned long _byte = regnum*HLL_BITS/8; \
unsigned long _fb = regnum*HLL_BITS&7; \
unsigned long _fb8 = 8 - _fb; \
unsigned long _v = val; \
_p[_byte] &= ~(REDIS_HLL_REGISTER_MAX << _fb); \
_p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
_p[_byte] |= _v << _fb; \
_p[_byte+1] &= ~(REDIS_HLL_REGISTER_MAX >> _fb8); \
_p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
_p[_byte+1] |= _v >> _fb8; \
} while(0)
/* Macros to access the sparse representation.
* The macros parameter is expected to be an uint8_t pointer. */
#define HLL_SPARSE_XZERO_BIT 0x40 /* 01xxxxxx */
#define HLL_SPARSE_VAL_BIT 0x80 /* 1vvvvvxx */
#define HLL_SPARSE_IS_ZERO(p) (((*(p)) & 0xc0) == 0) /* 00xxxxxx */
#define HLL_SPARSE_IS_XZERO(p) (((*(p)) & 0xc0) == HLL_SPARSE_XZERO_BIT)
#define HLL_SPARSE_IS_VAL(p) ((*(p)) & HLL_SPARSE_VAL_BIT)
#define HLL_SPARSE_ZERO_LEN(p) (((*(p)) & 0x3f)+1)
#define HLL_SPARSE_XZERO_LEN(p) (((((*(p)) & 0x3f) << 8) | (*((p)+1)))+1)
#define HLL_SPARSE_VAL_VALUE(p) ((((*(p)) >> 2) & 0x1f)+1)
#define HLL_SPARSE_VAL_LEN(p) (((*(p)) & 0x3)+1)
#define HLL_SPARSE_VAL_MAX_VALUE 32
#define HLL_SPARSE_VAL_MAX_LEN 4
#define HLL_SPARSE_ZERO_MAX_LEN 64
#define HLL_SPARSE_XZERO_MAX_LEN 16384
#define HLL_SPARSE_VAL_SET(p,val,len) do { \
*(p) = (((val)-1)<<2|((len)-1))|HLL_SPARSE_VAL_BIT; \
} while(0)
#define HLL_SPARSE_ZERO_SET(p,len) do { \
*(p) = (len)-1; \
} while(0)
#define HLL_SPARSE_XZERO_SET(p,len) do { \
int _l = (len)-1; \
*(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
*((p)+1) = (_l&0xff); \
} while(0)
/* ========================= HyperLogLog algorithm ========================= */
/* Our hash function is MurmurHash2, 64 bit version.
......@@ -290,22 +438,14 @@ uint64_t MurmurHash64A (const void * key, int len, unsigned int seed) {
return h;
}
/* "Add" the element in the hyperloglog data structure.
* Actually nothing is added, but the max 0 pattern counter of the subset
* the element belongs to is incremented if needed.
*
* 'registers' is expected to have room for REDIS_HLL_REGISTERS plus an
* additional byte on the right. This requirement is met by sds strings
* automatically since they are implicitly null terminated.
*
* The function always succeed, however if as a result of the operation
* the approximated cardinality changed, 1 is returned. Otherwise 0
* is returned. */
int hllAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
/* Given a string element to add to the HyperLogLog, returns the length
* of the pattern 000..1 of the element hash. As a side effect 'regp' is
* set to the register index this element hashes to. */
int hllPatLen(unsigned char *ele, size_t elesize, long *regp) {
uint64_t hash, bit, index;
uint8_t oldcount, count;
int count;
/* Count the number of zeroes starting from bit REDIS_HLL_REGISTERS
/* Count the number of zeroes starting from bit HLL_REGISTERS
* (that is a power of two corresponding to the first bit we don't use
* as index). The max run can be 64-P+1 bits.
*
......@@ -317,52 +457,58 @@ int hllAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
* This may sound like inefficient, but actually in the average case
* there are high probabilities to find a 1 after a few iterations. */
hash = MurmurHash64A(ele,elesize,0xadc83b19ULL);
index = hash & HLL_P_MASK; /* Register index. */
hash |= ((uint64_t)1<<63); /* Make sure the loop terminates. */
bit = REDIS_HLL_REGISTERS; /* First bit not used to address the register. */
bit = HLL_REGISTERS; /* First bit not used to address the register. */
count = 1; /* Initialized to 1 since we count the "00000...1" pattern. */
while((hash & bit) == 0) {
count++;
bit <<= 1;
}
*regp = (int) index;
return count;
}
/* ================== Dense representation implementation ================== */
/* "Add" the element in the dense hyperloglog data structure.
* Actually nothing is added, but the max 0 pattern counter of the subset
* the element belongs to is incremented if needed.
*
* 'registers' is expected to have room for HLL_REGISTERS plus an
* additional byte on the right. This requirement is met by sds strings
* automatically since they are implicitly null terminated.
*
* The function always succeed, however if as a result of the operation
* the approximated cardinality changed, 1 is returned. Otherwise 0
* is returned. */
int hllDenseAdd(uint8_t *registers, unsigned char *ele, size_t elesize) {
uint8_t oldcount, count;
long index;
/* Update the register if this element produced a longer run of zeroes. */
index = hash & REDIS_HLL_P_MASK; /* Index a register inside registers. */
HLL_GET_REGISTER(oldcount,registers,index);
count = hllPatLen(ele,elesize,&index);
HLL_DENSE_GET_REGISTER(oldcount,registers,index);
if (count > oldcount) {
HLL_SET_REGISTER(registers,index,count);
HLL_DENSE_SET_REGISTER(registers,index,count);
return 1;
} else {
return 0;
}
}
/* Return the approximated cardinality of the set based on the armonic
* mean of the registers values. */
uint64_t hllCount(uint8_t *registers) {
double m = REDIS_HLL_REGISTERS;
double alpha = 0.7213/(1+1.079/m);
/* Compute SUM(2^-reg) in the dense representation.
* PE is an array with a pre-computer table of values 2^-reg indexed by reg.
* As a side effect the integer pointed by 'ezp' is set to the number
* of zero registers. */
double hllDenseSum(uint8_t *registers, double *PE, int *ezp) {
double E = 0;
int ez = 0; /* Number of registers equal to 0. */
int j;
/* We precompute 2^(-reg[j]) in a small table in order to
* speedup the computation of SUM(2^-register[0..i]). */
static int initialized = 0;
static double PE[64];
if (!initialized) {
PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */
for (j = 1; j < 64; j++) {
/* 2^(-reg[j]) is the same as 1/2^reg[j]. */
PE[j] = 1.0/(1ULL << j);
}
initialized = 1;
}
int j, ez = 0;
/* Compute SUM(2^-register[0..i]).
* Redis default is to use 16384 registers 6 bits each. The code works
/* Redis default is to use 16384 registers 6 bits each. The code works
* with other values by modifying the defines, but for our target value
* we take a faster path with unrolled loops. */
if (REDIS_HLL_REGISTERS == 16384 && REDIS_HLL_BITS == 6) {
if (HLL_REGISTERS == 16384 && HLL_BITS == 6) {
uint8_t *r = registers;
unsigned long r0, r1, r2, r3, r4, r5, r6, r7, r8, r9,
r10, r11, r12, r13, r14, r15;
......@@ -394,18 +540,460 @@ uint64_t hllCount(uint8_t *registers) {
r += 12;
}
} else {
for (j = 0; j < REDIS_HLL_REGISTERS; j++) {
for (j = 0; j < HLL_REGISTERS; j++) {
unsigned long reg;
HLL_GET_REGISTER(reg,registers,j);
HLL_DENSE_GET_REGISTER(reg,registers,j);
if (reg == 0) {
ez++;
E += 1; /* 2^(-reg[j]) is 1 when m is 0. */
/* Increment E at the end of the loop. */
} else {
E += PE[reg]; /* Precomputed 2^(-reg[j]). */
}
}
E += ez; /* Add 2^0 'ez' times. */
}
*ezp = ez;
return E;
}
/* ================== Sparse representation implementation ================= */
/* Convert the HLL with sparse representation given as input in its dense
* representation. Both representations are represented by SDS strings, and
* the input representation is freed as a side effect.
*
* The function returns REDIS_OK if the sparse representation was valid,
* otherwise REDIS_ERR is returned if the representation was corrupted. */
int hllSparseToDense(robj *o) {
sds sparse = o->ptr, dense;
struct hllhdr *hdr, *oldhdr = (struct hllhdr*)sparse;
int idx = 0, runlen, regval;
uint8_t *p = (uint8_t*)sparse, *end = p+sdslen(sparse);
/* If the representation is already the right one return ASAP. */
hdr = (struct hllhdr*) sparse;
if (hdr->encoding == HLL_DENSE) return REDIS_OK;
/* Create a string of the right size filled with zero bytes.
* Note that the cached cardinality is set to 0 as a side effect
* that is exactly the cardinality of an empty HLL. */
dense = sdsnewlen(NULL,HLL_DENSE_SIZE);
hdr = (struct hllhdr*) dense;
*hdr = *oldhdr; /* This will copy the magic and cached cardinality. */
hdr->encoding = HLL_DENSE;
/* Now read the sparse representation and set non-zero registers
* accordingly. */
p += HLL_HDR_SIZE;
while(p < end) {
if (HLL_SPARSE_IS_ZERO(p)) {
runlen = HLL_SPARSE_ZERO_LEN(p);
idx += runlen;
p++;
} else if (HLL_SPARSE_IS_XZERO(p)) {
runlen = HLL_SPARSE_XZERO_LEN(p);
idx += runlen;
p += 2;
} else {
runlen = HLL_SPARSE_VAL_LEN(p);
regval = HLL_SPARSE_VAL_VALUE(p);
while(runlen--) {
HLL_DENSE_SET_REGISTER(hdr->registers,idx,regval);
idx++;
}
p++;
}
}
/* If the sparse representation was valid, we expect to find idx
* set to HLL_REGISTERS. */
if (idx != HLL_REGISTERS) {
sdsfree(dense);
return REDIS_ERR;
}
/* Free the old representation and set the new one. */
sdsfree(o->ptr);
o->ptr = dense;
return REDIS_OK;
}
/* "Add" the element in the sparse hyperloglog data structure.
* Actually nothing is added, but the max 0 pattern counter of the subset
* the element belongs to is incremented if needed.
*
* The object 'o' is the String object holding the HLL. The function requires
* a reference to the object in order to be able to enlarge the string if
* needed.
*
* On success, the function returns 1 if the cardinality changed, or 0
* if the register for this element was not updated.
* On error (if the representation is invalid) -1 is returned.
*
* As a side effect the function may promote the HLL representation from
* sparse to dense: this happens when a register requires to be set to a value
* not representable with the sparse representation, or when the resulting
* size would be greater than server.hll_sparse_max_bytes. */
int hllSparseAdd(robj *o, unsigned char *ele, size_t elesize) {
struct hllhdr *hdr;
uint8_t oldcount, count, *sparse, *end, *p, *prev, *next;
long index, first, span;
long is_zero = 0, is_xzero = 0, is_val = 0, runlen = 0;
/* Update the register if this element produced a longer run of zeroes. */
count = hllPatLen(ele,elesize,&index);
/* If the count is too big to be representable by the sparse representation
* switch to dense representation. */
if (count > HLL_SPARSE_VAL_MAX_VALUE) goto promote;
/* When updating a sparse representation, sometimes we may need to
* enlarge the buffer for up to 3 bytes in the worst case (XZERO split
* into XZERO-VAL-XZERO). Make sure there is enough space right now
* so that the pointers we take during the execution of the function
* will be valid all the time. */
o->ptr = sdsMakeRoomFor(o->ptr,3);
/* Step 1: we need to locate the opcode we need to modify to check
* if a value update is actually needed. */
sparse = p = ((uint8_t*)o->ptr) + HLL_HDR_SIZE;
end = p + sdslen(o->ptr) - HLL_HDR_SIZE;
first = 0;
prev = NULL; /* Points to previos opcode at the end of the loop. */
next = NULL; /* Points to the next opcode at the end of the loop. */
span = 0;
while(p < end) {
long oplen;
/* Set span to the number of registers covered by this opcode.
*
* This is the most performance critical loop of the sparse
* representation. Sorting the conditionals from the most to the
* least frequent opcode in many-bytes sparse HLLs is faster. */
oplen = 1;
if (HLL_SPARSE_IS_ZERO(p)) {
span = HLL_SPARSE_ZERO_LEN(p);
} else if (HLL_SPARSE_IS_VAL(p)) {
span = HLL_SPARSE_VAL_LEN(p);
} else { /* XZERO. */
span = HLL_SPARSE_XZERO_LEN(p);
oplen = 2;
}
/* Break if this opcode covers the register as 'index'. */
if (index <= first+span-1) break;
prev = p;
p += oplen;
first += span;
}
if (span == 0) return -1; /* Invalid format. */
next = HLL_SPARSE_IS_XZERO(p) ? p+2 : p+1;
if (next >= end) next = NULL;
/* Cache current opcode type to avoid using the macro again and
* again for something that will not change.
* Also cache the run-length of the opcode. */
if (HLL_SPARSE_IS_ZERO(p)) {
is_zero = 1;
runlen = HLL_SPARSE_ZERO_LEN(p);
} else if (HLL_SPARSE_IS_XZERO(p)) {
is_xzero = 1;
runlen = HLL_SPARSE_XZERO_LEN(p);
} else {
is_val = 1;
runlen = HLL_SPARSE_VAL_LEN(p);
}
/* Step 2: After the loop:
*
* 'first' stores to the index of the first register covered
* by the current opcode, which is pointed by 'p'.
*
* 'next' ad 'prev' store respectively the next and previous opcode,
* or NULL if the opcode at 'p' is respectively the last or first.
*
* 'span' is set to the number of registers covered by the current
* opcode.
*
* There are different cases in order to update the data structure
* in place without generating it from scratch:
*
* A) If it is a VAL opcode already set to a value >= our 'count'
* no update is needed, regardless of the VAL run-length field.
* In this case PFADD returns 0 since no changes are performed.
*
* B) If it is a VAL opcode with len = 1 (representing only our
* register) and the value is less than 'count', we just update it
* since this is a trivial case. */
if (is_val) {
oldcount = HLL_SPARSE_VAL_VALUE(p);
/* Case A. */
if (oldcount >= count) return 0;
/* Case B. */
if (runlen == 1) {
HLL_SPARSE_VAL_SET(p,count,1);
goto updated;
}
}
/* C) Another trivial to handle case is a ZERO opcode with a len of 1.
* We can just replace it with a VAL opcode with our value and len of 1. */
if (is_zero && runlen == 1) {
HLL_SPARSE_VAL_SET(p,count,1);
goto updated;
}
/* D) General case.
*
* The other cases are more complex: our register requires to be updated
* and is either currently represented by a VAL opcode with len > 1,
* by a ZERO opcode with len > 1, or by an XZERO opcode.
*
* In those cases the original opcode must be split into muliple
* opcodes. The worst case is an XZERO split in the middle resuling into
* XZERO - VAL - XZERO, so the resulting sequence max length is
* 5 bytes.
*
* We perform the split writing the new sequence into the 'new' buffer
* with 'newlen' as length. Later the new sequence is inserted in place
* of the old one, possibly moving what is on the right a few bytes
* if the new sequence is longer than the older one. */
uint8_t seq[5], *n = seq;
int last = first+span-1; /* Last register covered by the sequence. */
int len;
if (is_zero || is_xzero) {
/* Handle splitting of ZERO / XZERO. */
if (index != first) {
len = index-first;
if (len > HLL_SPARSE_ZERO_MAX_LEN) {
HLL_SPARSE_XZERO_SET(n,len);
n += 2;
} else {
HLL_SPARSE_ZERO_SET(n,len);
n++;
}
}
HLL_SPARSE_VAL_SET(n,count,1);
n++;
if (index != last) {
len = last-index;
if (len > HLL_SPARSE_ZERO_MAX_LEN) {
HLL_SPARSE_XZERO_SET(n,len);
n += 2;
} else {
HLL_SPARSE_ZERO_SET(n,len);
n++;
}
}
} else {
/* Handle splitting of VAL. */
int curval = HLL_SPARSE_VAL_VALUE(p);
if (index != first) {
len = index-first;
HLL_SPARSE_VAL_SET(n,curval,len);
n++;
}
HLL_SPARSE_VAL_SET(n,count,1);
n++;
if (index != last) {
len = last-index;
HLL_SPARSE_VAL_SET(n,curval,len);
n++;
}
}
/* Step 3: substitute the new sequence with the old one.
*
* Note that we already allocated space on the sds string
* calling sdsMakeRoomFor(). */
int seqlen = n-seq;
int oldlen = is_xzero ? 2 : 1;
int deltalen = seqlen-oldlen;
if (deltalen > 0 &&
sdslen(o->ptr)+deltalen > server.hll_sparse_max_bytes) goto promote;
if (deltalen && next) memmove(next+deltalen,next,end-next);
sdsIncrLen(o->ptr,deltalen);
memcpy(p,seq,seqlen);
end += deltalen;
updated:
/* Step 4: Merge adjacent values if possible.
*
* The representation was updated, however the resulting representation
* may not be optimal: adjacent VAL opcodes can sometimes be merged into
* a single one. */
p = prev ? prev : sparse;
int scanlen = 5; /* Scan up to 5 upcodes starting from prev. */
while (p < end && scanlen--) {
if (HLL_SPARSE_IS_XZERO(p)) {
p += 2;
continue;
} else if (HLL_SPARSE_IS_ZERO(p)) {
p++;
continue;
}
/* We need two adjacent VAL opcodes to try a merge, having
* the same value, and a len that fits the VAL opcode max len. */
if (p+1 < end && HLL_SPARSE_IS_VAL(p+1)) {
int v1 = HLL_SPARSE_VAL_VALUE(p);
int v2 = HLL_SPARSE_VAL_VALUE(p+1);
if (v1 == v2) {
int len = HLL_SPARSE_VAL_LEN(p)+HLL_SPARSE_VAL_LEN(p+1);
if (len <= HLL_SPARSE_VAL_MAX_LEN) {
HLL_SPARSE_VAL_SET(p+1,v1,len);
memmove(p,p+1,end-p);
sdsIncrLen(o->ptr,-1);
end--;
/* After a merge we reiterate without incrementing 'p'
* in order to try to merge the just merged value with
* a value on its right. */
continue;
}
}
}
p++;
}
/* Invalidate the cached cardinality. */
hdr = o->ptr;
HLL_INVALIDATE_CACHE(hdr);
return 1;
promote: /* Promote to dense representation. */
if (hllSparseToDense(o) == REDIS_ERR) return -1; /* Corrupted HLL. */
hdr = o->ptr;
/* We need to call hllDenseAdd() to perform the operation after the
* conversion. However the result must be 1, since if we need to
* convert from sparse to dense a register requires to be updated.
*
* Note that this in turn means that PFADD will make sure the command
* is propagated to slaves / AOF, so if there is a sparse -> dense
* convertion, it will be performed in all the slaves as well. */
int dense_retval = hllDenseAdd(hdr->registers, ele, elesize);
redisAssert(dense_retval == 1);
return dense_retval;
}
/* Compute SUM(2^-reg) in the sparse representation.
* PE is an array with a pre-computer table of values 2^-reg indexed by reg.
* As a side effect the integer pointed by 'ezp' is set to the number
* of zero registers. */
double hllSparseSum(uint8_t *sparse, int sparselen, double *PE, int *ezp, int *invalid) {
double E = 0;
int ez = 0, idx = 0, runlen, regval;
uint8_t *end = sparse+sparselen, *p = sparse;
while(p < end) {
if (HLL_SPARSE_IS_ZERO(p)) {
runlen = HLL_SPARSE_ZERO_LEN(p);
idx += runlen;
ez += runlen;
/* Increment E at the end of the loop. */
p++;
} else if (HLL_SPARSE_IS_XZERO(p)) {
runlen = HLL_SPARSE_XZERO_LEN(p);
idx += runlen;
ez += runlen;
/* Increment E at the end of the loop. */
p += 2;
} else {
runlen = HLL_SPARSE_VAL_LEN(p);
regval = HLL_SPARSE_VAL_VALUE(p);
idx += runlen;
E += PE[regval]*runlen;
p++;
}
}
if (idx != HLL_REGISTERS && invalid) *invalid = 1;
E += ez; /* Add 2^0 'ez' times. */
*ezp = ez;
return E;
}
/* ========================= HyperLogLog Count ==============================
* This is the core of the algorithm where the approximated count is computed.
* The function uses the lower level hllDenseSum() and hllSparseSum() functions
* as helpers to compute the SUM(2^-reg) part of the computation, which is
* representation-specific, while all the rest is common. */
/* Implements the SUM operation for uint8_t data type which is only used
* internally as speedup for PFCOUNT with multiple keys. */
double hllRawSum(uint8_t *registers, double *PE, int *ezp) {
double E = 0;
int j, ez = 0;
uint64_t *word = (uint64_t*) registers;
uint8_t *bytes;
for (j = 0; j < HLL_REGISTERS/8; j++) {
if (*word == 0) {
ez += 8;
} else {
bytes = (uint8_t*) word;
if (bytes[0]) E += PE[bytes[0]]; else ez++;
if (bytes[1]) E += PE[bytes[1]]; else ez++;
if (bytes[2]) E += PE[bytes[2]]; else ez++;
if (bytes[3]) E += PE[bytes[3]]; else ez++;
if (bytes[4]) E += PE[bytes[4]]; else ez++;
if (bytes[5]) E += PE[bytes[5]]; else ez++;
if (bytes[6]) E += PE[bytes[6]]; else ez++;
if (bytes[7]) E += PE[bytes[7]]; else ez++;
}
word++;
}
E += ez; /* 2^(-reg[j]) is 1 when m is 0, add it 'ez' times for every
zero register in the HLL. */
*ezp = ez;
return E;
}
/* Return the approximated cardinality of the set based on the armonic
* mean of the registers values. 'hdr' points to the start of the SDS
* representing the String object holding the HLL representation.
*
* If the sparse representation of the HLL object is not valid, the integer
* pointed by 'invalid' is set to non-zero, otherwise it is left untouched.
*
* hllCount() supports a special internal-only encoding of HLL_RAW, that
* is, hdr->registers will point to an uint8_t array of HLL_REGISTERS element.
* This is useful in order to speedup PFCOUNT when called against multiple
* keys (no need to work with 6-bit integers encoding). */
uint64_t hllCount(struct hllhdr *hdr, int *invalid) {
double m = HLL_REGISTERS;
double E, alpha = 0.7213/(1+1.079/m);
int j, ez; /* Number of registers equal to 0. */
/* We precompute 2^(-reg[j]) in a small table in order to
* speedup the computation of SUM(2^-register[0..i]). */
static int initialized = 0;
static double PE[64];
if (!initialized) {
PE[0] = 1; /* 2^(-reg[j]) is 1 when m is 0. */
for (j = 1; j < 64; j++) {
/* 2^(-reg[j]) is the same as 1/2^reg[j]. */
PE[j] = 1.0/(1ULL << j);
}
initialized = 1;
}
/* Compute SUM(2^-register[0..i]). */
if (hdr->encoding == HLL_DENSE) {
E = hllDenseSum(hdr->registers,PE,&ez);
} else if (hdr->encoding == HLL_SPARSE) {
E = hllSparseSum(hdr->registers,
sdslen((sds)hdr)-HLL_HDR_SIZE,PE,&ez,invalid);
} else if (hdr->encoding == HLL_RAW) {
E = hllRawSum(hdr->registers,PE,&ez);
} else {
redisPanic("Unknown HyperLogLog encoding in hllCount()");
}
/* Muliply the inverse of E for alpha_m * m^2 to have the raw estimate. */
E = (1/E)*alpha*m*m;
......@@ -435,47 +1023,138 @@ uint64_t hllCount(uint8_t *registers) {
return (uint64_t) E;
}
/* Call hllDenseAdd() or hllSparseAdd() according to the HLL encoding. */
int hllAdd(robj *o, unsigned char *ele, size_t elesize) {
struct hllhdr *hdr = o->ptr;
switch(hdr->encoding) {
case HLL_DENSE: return hllDenseAdd(hdr->registers,ele,elesize);
case HLL_SPARSE: return hllSparseAdd(o,ele,elesize);
default: return -1; /* Invalid representation. */
}
}
/* Merge by computing MAX(registers[i],hll[i]) the HyperLogLog 'hll'
* with an array of uint8_t HLL_REGISTERS registers pointed by 'max'.
*
* The hll object must be already validated via isHLLObjectOrReply()
* or in some other way.
*
* If the HyperLogLog is sparse and is found to be invalid, REDIS_ERR
* is returned, otherwise the function always succeeds. */
int hllMerge(uint8_t *max, robj *hll) {
struct hllhdr *hdr = hll->ptr;
int i;
if (hdr->encoding == HLL_DENSE) {
uint8_t val;
for (i = 0; i < HLL_REGISTERS; i++) {
HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
if (val > max[i]) max[i] = val;
}
} else {
uint8_t *p = hll->ptr, *end = p + sdslen(hll->ptr);
long runlen, regval;
p += HLL_HDR_SIZE;
i = 0;
while(p < end) {
if (HLL_SPARSE_IS_ZERO(p)) {
runlen = HLL_SPARSE_ZERO_LEN(p);
i += runlen;
p++;
} else if (HLL_SPARSE_IS_XZERO(p)) {
runlen = HLL_SPARSE_XZERO_LEN(p);
i += runlen;
p += 2;
} else {
runlen = HLL_SPARSE_VAL_LEN(p);
regval = HLL_SPARSE_VAL_VALUE(p);
while(runlen--) {
if (regval > max[i]) max[i] = regval;
i++;
}
p++;
}
}
if (i != HLL_REGISTERS) return REDIS_ERR;
}
return REDIS_OK;
}
/* ========================== HyperLogLog commands ========================== */
/* An HyperLogLog object is a string with space for 16k 6-bit integers,
* a cached 64 bit cardinality value, and a 4 byte "magic" and additional
* 4 bytes for version reserved for future use. */
/* Create an HLL object. We always create the HLL using sparse encoding.
* This will be upgraded to the dense representation as needed. */
robj *createHLLObject(void) {
robj *o;
char *p;
struct hllhdr *hdr;
sds s;
uint8_t *p;
int sparselen = HLL_HDR_SIZE +
(((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) /
HLL_SPARSE_XZERO_MAX_LEN)*2);
int aux;
/* Create a string of the right size filled with zero bytes.
* Note that the cached cardinality is set to 0 as a side effect
* that is exactly the cardinality of an empty HLL. */
o = createObject(REDIS_STRING,sdsnewlen(NULL,REDIS_HLL_SIZE));
p = o->ptr;
memcpy(p+REDIS_HLL_SIZE-8,"HYLL",4);
/* Populate the sparse representation with as many XZERO opcodes as
* needed to represent all the registers. */
aux = HLL_REGISTERS;
s = sdsnewlen(NULL,sparselen);
p = (uint8_t*)s + HLL_HDR_SIZE;
while(aux) {
int xzero = HLL_SPARSE_XZERO_MAX_LEN;
if (xzero > aux) xzero = aux;
HLL_SPARSE_XZERO_SET(p,xzero);
p += 2;
aux -= xzero;
}
redisAssert((p-(uint8_t*)s) == sparselen);
/* Create the actual object. */
o = createObject(REDIS_STRING,s);
hdr = o->ptr;
memcpy(hdr->magic,"HYLL",4);
hdr->encoding = HLL_SPARSE;
return o;
}
/* Check if the object is a String of REDIS_HLL_SIZE bytes.
/* Check if the object is a String with a valid HLL representation.
* Return REDIS_OK if this is true, otherwise reply to the client
* with an error and return REDIS_ERR. */
int isHLLObjectOrReply(redisClient *c, robj *o) {
struct hllhdr *hdr;
/* Key exists, check type */
if (checkType(c,o,REDIS_STRING))
return REDIS_ERR; /* Error already sent. */
/* If this is a string representing an HLL, the size should match
* exactly. */
if (stringObjectLen(o) != REDIS_HLL_SIZE) {
addReplySds(c,
sdsnew("-WRONGTYPE Key is not a valid "
"HyperLogLog string value.\r\n"));
return REDIS_ERR;
}
if (stringObjectLen(o) < sizeof(*hdr)) goto invalid;
hdr = o->ptr;
/* Magic should be "HYLL". */
if (hdr->magic[0] != 'H' || hdr->magic[1] != 'Y' ||
hdr->magic[2] != 'L' || hdr->magic[3] != 'L') goto invalid;
if (hdr->encoding > HLL_MAX_ENCODING) goto invalid;
/* Dense representation string length should match exactly. */
if (hdr->encoding == HLL_DENSE &&
stringObjectLen(o) != HLL_DENSE_SIZE) goto invalid;
/* All tests passed. */
return REDIS_OK;
invalid:
addReplySds(c,
sdsnew("-WRONGTYPE Key is not a valid "
"HyperLogLog string value.\r\n"));
return REDIS_ERR;
}
/* PFADD var ele ele ele ... ele => :0 or :1 */
void pfaddCommand(redisClient *c) {
robj *o = lookupKeyWrite(c->db,c->argv[1]);
uint8_t *registers;
struct hllhdr *hdr;
int updated = 0, j;
if (o == NULL) {
......@@ -490,30 +1169,71 @@ void pfaddCommand(redisClient *c) {
o = dbUnshareStringValue(c->db,c->argv[1],o);
}
/* Perform the low level ADD operation for every element. */
registers = o->ptr;
for (j = 2; j < c->argc; j++) {
if (hllAdd(registers, (unsigned char*)c->argv[j]->ptr,
sdslen(c->argv[j]->ptr)))
{
int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr,
sdslen(c->argv[j]->ptr));
switch(retval) {
case 1:
updated++;
break;
case -1:
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
}
hdr = o->ptr;
if (updated) {
signalModifiedKey(c->db,c->argv[1]);
notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
server.dirty++;
/* Invalidate the cached cardinality. */
registers[REDIS_HLL_SIZE-9] |= (1<<7);
HLL_INVALIDATE_CACHE(hdr);
}
addReply(c, updated ? shared.cone : shared.czero);
}
/* PFCOUNT var -> approximated cardinality of set. */
void pfcountCommand(redisClient *c) {
robj *o = lookupKeyRead(c->db,c->argv[1]);
uint8_t *registers;
robj *o;
struct hllhdr *hdr;
uint64_t card;
/* Case 1: multi-key keys, cardinality of the union.
*
* When multiple keys are specified, PFCOUNT actually computes
* the cardinality of the merge of the N HLLs specified. */
if (c->argc > 2) {
uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers;
int j;
/* Compute an HLL with M[i] = MAX(M[i]_j). */
memset(max,0,sizeof(max));
hdr = (struct hllhdr*) max;
hdr->encoding = HLL_RAW; /* Special internal-only encoding. */
registers = max + HLL_HDR_SIZE;
for (j = 1; j < c->argc; j++) {
/* Check type and size. */
robj *o = lookupKeyRead(c->db,c->argv[j]);
if (o == NULL) continue; /* Assume empty HLL for non existing var. */
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
/* Merge with this HLL with our 'max' HHL by setting max[i]
* to MAX(max[i],hll[i]). */
if (hllMerge(registers,o) == REDIS_ERR) {
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
}
/* Compute cardinality of the resulting set. */
addReplyLongLong(c,hllCount(hdr,NULL));
return;
}
/* Case 2: cardinality of the single HLL.
*
* The user specified a single key. Either return the cached value
* or compute one and update the cache. */
o = lookupKeyRead(c->db,c->argv[1]);
if (o == NULL) {
/* No key? Cardinality is zero since no element was added, otherwise
* we would have a key as HLLADD creates it as a side effect. */
......@@ -523,28 +1243,33 @@ void pfcountCommand(redisClient *c) {
o = dbUnshareStringValue(c->db,c->argv[1],o);
/* Check if the cached cardinality is valid. */
registers = o->ptr;
if ((registers[REDIS_HLL_SIZE-9] & (1<<7)) == 0) {
hdr = o->ptr;
if (HLL_VALID_CACHE(hdr)) {
/* Just return the cached value. */
card = (uint64_t)registers[REDIS_HLL_SIZE-16];
card |= (uint64_t)registers[REDIS_HLL_SIZE-15] << 8;
card |= (uint64_t)registers[REDIS_HLL_SIZE-14] << 16;
card |= (uint64_t)registers[REDIS_HLL_SIZE-13] << 24;
card |= (uint64_t)registers[REDIS_HLL_SIZE-12] << 32;
card |= (uint64_t)registers[REDIS_HLL_SIZE-11] << 40;
card |= (uint64_t)registers[REDIS_HLL_SIZE-10] << 48;
card |= (uint64_t)registers[REDIS_HLL_SIZE-9] << 56;
card = (uint64_t)hdr->card[0];
card |= (uint64_t)hdr->card[1] << 8;
card |= (uint64_t)hdr->card[2] << 16;
card |= (uint64_t)hdr->card[3] << 24;
card |= (uint64_t)hdr->card[4] << 32;
card |= (uint64_t)hdr->card[5] << 40;
card |= (uint64_t)hdr->card[6] << 48;
card |= (uint64_t)hdr->card[7] << 56;
} else {
int invalid = 0;
/* Recompute it and update the cached value. */
card = hllCount(registers);
registers[REDIS_HLL_SIZE-16] = card & 0xff;
registers[REDIS_HLL_SIZE-15] = (card >> 8) & 0xff;
registers[REDIS_HLL_SIZE-14] = (card >> 16) & 0xff;
registers[REDIS_HLL_SIZE-13] = (card >> 24) & 0xff;
registers[REDIS_HLL_SIZE-12] = (card >> 32) & 0xff;
registers[REDIS_HLL_SIZE-11] = (card >> 40) & 0xff;
registers[REDIS_HLL_SIZE-10] = (card >> 48) & 0xff;
registers[REDIS_HLL_SIZE-9] = (card >> 56) & 0xff;
card = hllCount(hdr,&invalid);
if (invalid) {
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
hdr->card[0] = card & 0xff;
hdr->card[1] = (card >> 8) & 0xff;
hdr->card[2] = (card >> 16) & 0xff;
hdr->card[3] = (card >> 24) & 0xff;
hdr->card[4] = (card >> 32) & 0xff;
hdr->card[5] = (card >> 40) & 0xff;
hdr->card[6] = (card >> 48) & 0xff;
hdr->card[7] = (card >> 56) & 0xff;
/* This is not considered a read-only command even if the
* data structure is not modified, since the cached value
* may be modified and given that the HLL is a Redis string
......@@ -558,17 +1283,15 @@ void pfcountCommand(redisClient *c) {
/* PFMERGE dest src1 src2 src3 ... srcN => OK */
void pfmergeCommand(redisClient *c) {
uint8_t max[REDIS_HLL_REGISTERS];
uint8_t *registers;
int j, i;
uint8_t max[HLL_REGISTERS];
struct hllhdr *hdr;
int j;
/* Compute an HLL with M[i] = MAX(M[i]_j).
* We we the maximum into the max array of registers. We'll write
* it to the target variable later. */
memset(max,0,sizeof(max));
for (j = 1; j < c->argc; j++) {
uint8_t val;
/* Check type and size. */
robj *o = lookupKeyRead(c->db,c->argv[j]);
if (o == NULL) continue; /* Assume empty HLL for non existing var. */
......@@ -576,15 +1299,14 @@ void pfmergeCommand(redisClient *c) {
/* Merge with this HLL with our 'max' HHL by setting max[i]
* to MAX(max[i],hll[i]). */
registers = o->ptr;
for (i = 0; i < REDIS_HLL_REGISTERS; i++) {
HLL_GET_REGISTER(val,registers,i);
if (val > max[i]) max[i] = val;
if (hllMerge(max,o) == REDIS_ERR) {
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
}
/* Create / unshare the destination key's value if needed. */
robj *o = lookupKeyRead(c->db,c->argv[1]);
robj *o = lookupKeyWrite(c->db,c->argv[1]);
if (o == NULL) {
/* Create the key with a string value of the exact length to
* hold our HLL data structure. sdsnewlen() when NULL is passed
......@@ -598,16 +1320,22 @@ void pfmergeCommand(redisClient *c) {
o = dbUnshareStringValue(c->db,c->argv[1],o);
}
/* Only support dense objects as destination. */
if (hllSparseToDense(o) == REDIS_ERR) {
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
/* Write the resulting HLL to the destination HLL registers and
* invalidate the cached value. */
registers = o->ptr;
for (j = 0; j < REDIS_HLL_REGISTERS; j++) {
HLL_SET_REGISTER(registers,j,max[j]);
hdr = o->ptr;
for (j = 0; j < HLL_REGISTERS; j++) {
HLL_DENSE_SET_REGISTER(hdr->registers,j,max[j]);
}
registers[REDIS_HLL_SIZE-9] |= (1<<7);
HLL_INVALIDATE_CACHE(hdr);
signalModifiedKey(c->db,c->argv[1]);
/* We generate an HLLADD event for HLLMERGE for semantical simplicity
/* We generate an PFADD event for PFMERGE for semantical simplicity
* since in theory this is a mass-add of elements. */
notifyKeyspaceEvent(REDIS_NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
server.dirty++;
......@@ -619,30 +1347,32 @@ void pfmergeCommand(redisClient *c) {
/* PFSELFTEST
* This command performs a self-test of the HLL registers implementation.
* Something that is not easy to test from within the outside. */
#define REDIS_HLL_TEST_CYCLES 1000
#define HLL_TEST_CYCLES 1000
void pfselftestCommand(redisClient *c) {
int j, i;
sds bitcounters = sdsnewlen(NULL,REDIS_HLL_SIZE);
uint8_t bytecounters[REDIS_HLL_REGISTERS];
sds bitcounters = sdsnewlen(NULL,HLL_DENSE_SIZE);
struct hllhdr *hdr = (struct hllhdr*) bitcounters, *hdr2;
robj *o = NULL;
uint8_t bytecounters[HLL_REGISTERS];
/* Test 1: access registers.
* The test is conceived to test that the different counters of our data
* structure are accessible and that setting their values both result in
* the correct value to be retained and not affect adjacent values. */
for (j = 0; j < REDIS_HLL_TEST_CYCLES; j++) {
for (j = 0; j < HLL_TEST_CYCLES; j++) {
/* Set the HLL counters and an array of unsigned byes of the
* same size to the same set of random values. */
for (i = 0; i < REDIS_HLL_REGISTERS; i++) {
unsigned int r = rand() & REDIS_HLL_REGISTER_MAX;
for (i = 0; i < HLL_REGISTERS; i++) {
unsigned int r = rand() & HLL_REGISTER_MAX;
bytecounters[i] = r;
HLL_SET_REGISTER(bitcounters,i,r);
HLL_DENSE_SET_REGISTER(hdr->registers,i,r);
}
/* Check that we are able to retrieve the same values. */
for (i = 0; i < REDIS_HLL_REGISTERS; i++) {
for (i = 0; i < HLL_REGISTERS; i++) {
unsigned int val;
HLL_GET_REGISTER(val,bitcounters,i);
HLL_DENSE_GET_REGISTER(val,hdr->registers,i);
if (val != bytecounters[i]) {
addReplyErrorFormat(c,
"TESTFAILED Register %d should be %d but is %d",
......@@ -653,23 +1383,45 @@ void pfselftestCommand(redisClient *c) {
}
/* Test 2: approximation error.
* The test is adds unique elements and check that the estimated value
* The test adds unique elements and check that the estimated value
* is always reasonable bounds.
*
* We check that the error is smaller than 4 times than the expected
* standard error, to make it very unlikely for the test to fail because
* of a "bad" run. */
memset(bitcounters,0,REDIS_HLL_SIZE);
double relerr = 1.04/sqrt(REDIS_HLL_REGISTERS);
int64_t checkpoint = 1000;
* of a "bad" run.
*
* The test is performed with both dense and sparse HLLs at the same
* time also verifying that the computed cardinality is the same. */
memset(hdr->registers,0,HLL_DENSE_SIZE-HLL_HDR_SIZE);
o = createHLLObject();
double relerr = 1.04/sqrt(HLL_REGISTERS);
int64_t checkpoint = 1;
uint64_t seed = (uint64_t)rand() | (uint64_t)rand() << 32;
uint64_t ele;
for (j = 1; j <= 10000000; j++) {
ele = j ^ seed;
hllAdd((uint8_t*)bitcounters,(unsigned char*)&ele,sizeof(ele));
hllDenseAdd(hdr->registers,(unsigned char*)&ele,sizeof(ele));
hllAdd(o,(unsigned char*)&ele,sizeof(ele));
/* Make sure that for small cardinalities we use sparse
* encoding. */
if (j == checkpoint && j < server.hll_sparse_max_bytes/2) {
hdr2 = o->ptr;
if (hdr2->encoding != HLL_SPARSE) {
addReplyError(c, "TESTFAILED sparse encoding not used");
goto cleanup;
}
}
/* Check that dense and sparse representations agree. */
if (j == checkpoint && hllCount(hdr,NULL) != hllCount(o->ptr,NULL)) {
addReplyError(c, "TESTFAILED dense/sparse disagree");
goto cleanup;
}
/* Check error. */
if (j == checkpoint) {
int64_t abserr = checkpoint-
(int64_t)hllCount((uint8_t*)bitcounters);
int64_t abserr = checkpoint - (int64_t)hllCount(hdr,NULL);
if (abserr < 0) abserr = -abserr;
if (abserr > (uint64_t)(relerr*4*checkpoint)) {
addReplyErrorFormat(c,
......@@ -687,28 +1439,110 @@ void pfselftestCommand(redisClient *c) {
cleanup:
sdsfree(bitcounters);
if (o) decrRefCount(o);
}
/* PFGETREG
* Return the registers values of the specified HLL. */
void pfgetregCommand(redisClient *c) {
robj *o = lookupKeyRead(c->db,c->argv[1]);
uint8_t *registers;
/* PFDEBUG <subcommand> <key> ... args ...
* Different debugging related operations about the HLL implementation. */
void pfdebugCommand(redisClient *c) {
char *cmd = c->argv[1]->ptr;
struct hllhdr *hdr;
robj *o;
int j;
o = lookupKeyRead(c->db,c->argv[2]);
if (o == NULL) {
addReplyError(c,"The specified key does not exist");
return;
} else {
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
}
if (isHLLObjectOrReply(c,o) != REDIS_OK) return;
o = dbUnshareStringValue(c->db,c->argv[2],o);
hdr = o->ptr;
/* PFDEBUG GETREG <key> */
if (!strcasecmp(cmd,"getreg")) {
if (c->argc != 3) goto arityerr;
registers = o->ptr;
addReplyMultiBulkLen(c,REDIS_HLL_REGISTERS);
for (j = 0; j < REDIS_HLL_REGISTERS; j++) {
if (hdr->encoding == HLL_SPARSE) {
if (hllSparseToDense(o) == REDIS_ERR) {
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
server.dirty++; /* Force propagation on encoding change. */
}
hdr = o->ptr;
addReplyMultiBulkLen(c,HLL_REGISTERS);
for (j = 0; j < HLL_REGISTERS; j++) {
uint8_t val;
HLL_GET_REGISTER(val,registers,j);
HLL_DENSE_GET_REGISTER(val,hdr->registers,j);
addReplyLongLong(c,val);
}
}
/* PFDEBUG DECODE <key> */
else if (!strcasecmp(cmd,"decode")) {
if (c->argc != 3) goto arityerr;
uint8_t *p = o->ptr, *end = p+sdslen(o->ptr);
sds decoded = sdsempty();
if (hdr->encoding != HLL_SPARSE) {
addReplyError(c,"HLL encoding is not sparse");
return;
}
p += HLL_HDR_SIZE;
while(p < end) {
int runlen, regval;
if (HLL_SPARSE_IS_ZERO(p)) {
runlen = HLL_SPARSE_ZERO_LEN(p);
p++;
decoded = sdscatprintf(decoded,"z:%d ",runlen);
} else if (HLL_SPARSE_IS_XZERO(p)) {
runlen = HLL_SPARSE_XZERO_LEN(p);
p += 2;
decoded = sdscatprintf(decoded,"Z:%d ",runlen);
} else {
runlen = HLL_SPARSE_VAL_LEN(p);
regval = HLL_SPARSE_VAL_VALUE(p);
p++;
decoded = sdscatprintf(decoded,"v:%d,%d ",regval,runlen);
}
}
decoded = sdstrim(decoded," ");
addReplyBulkCBuffer(c,decoded,sdslen(decoded));
sdsfree(decoded);
}
/* PFDEBUG ENCODING <key> */
else if (!strcasecmp(cmd,"encoding")) {
char *encodingstr[2] = {"dense","sparse"};
if (c->argc != 3) goto arityerr;
addReplyStatus(c,encodingstr[hdr->encoding]);
}
/* PFDEBUG TODENSE <key> */
else if (!strcasecmp(cmd,"todense")) {
int conv = 0;
if (c->argc != 3) goto arityerr;
if (hdr->encoding == HLL_SPARSE) {
if (hllSparseToDense(o) == REDIS_ERR) {
addReplySds(c,sdsnew(invalid_hll_err));
return;
}
conv = 1;
server.dirty++; /* Force propagation on encoding change. */
}
addReply(c,conv ? shared.cone : shared.czero);
} else {
addReplyErrorFormat(c,"Unknown PFDEBUG subcommand '%s'", cmd);
}
return;
arityerr:
addReplyErrorFormat(c,
"Wrong number of arguments for the '%s' subcommand",cmd);
}
......@@ -171,6 +171,7 @@ struct redisCommand redisCommandTable[] = {
{"zrem",zremCommand,-3,"w",0,NULL,1,1,1,0,0},
{"zremrangebyscore",zremrangebyscoreCommand,4,"w",0,NULL,1,1,1,0,0},
{"zremrangebyrank",zremrangebyrankCommand,4,"w",0,NULL,1,1,1,0,0},
{"zremrangebylex",zremrangebylexCommand,4,"w",0,NULL,1,1,1,0,0},
{"zunionstore",zunionstoreCommand,-4,"wm",0,zunionInterGetKeys,0,0,0,0,0},
{"zinterstore",zinterstoreCommand,-4,"wm",0,zunionInterGetKeys,0,0,0,0,0},
{"zrange",zrangeCommand,-4,"r",0,NULL,1,1,1,0,0},
......@@ -179,6 +180,7 @@ struct redisCommand redisCommandTable[] = {
{"zrangebylex",zrangebylexCommand,-4,"r",0,NULL,1,1,1,0,0},
{"zrevrangebylex",zrevrangebylexCommand,-4,"r",0,NULL,1,1,1,0,0},
{"zcount",zcountCommand,4,"r",0,NULL,1,1,1,0,0},
{"zlexcount",zlexcountCommand,4,"r",0,NULL,1,1,1,0,0},
{"zrevrange",zrevrangeCommand,-4,"r",0,NULL,1,1,1,0,0},
{"zcard",zcardCommand,2,"r",0,NULL,1,1,1,0,0},
{"zscore",zscoreCommand,3,"r",0,NULL,1,1,1,0,0},
......@@ -272,9 +274,9 @@ struct redisCommand redisCommandTable[] = {
{"wait",waitCommand,3,"rs",0,NULL,0,0,0,0,0},
{"pfselftest",pfselftestCommand,1,"r",0,NULL,0,0,0,0,0},
{"pfadd",pfaddCommand,-2,"wm",0,NULL,1,1,1,0,0},
{"pfcount",pfcountCommand,2,"w",0,NULL,1,1,1,0,0},
{"pfcount",pfcountCommand,-2,"w",0,NULL,1,1,1,0,0},
{"pfmerge",pfmergeCommand,-2,"wm",0,NULL,1,-1,1,0,0},
{"pfgetreg",pfgetregCommand,2,"r",0,NULL,0,0,0,0,0}
{"pfdebug",pfdebugCommand,-3,"w",0,NULL,0,0,0,0,0}
};
struct evictionPoolEntry *evictionPoolAlloc(void);
......@@ -1421,6 +1423,7 @@ void initServerConfig() {
server.set_max_intset_entries = REDIS_SET_MAX_INTSET_ENTRIES;
server.zset_max_ziplist_entries = REDIS_ZSET_MAX_ZIPLIST_ENTRIES;
server.zset_max_ziplist_value = REDIS_ZSET_MAX_ZIPLIST_VALUE;
server.hll_sparse_max_bytes = REDIS_DEFAULT_HLL_SPARSE_MAX_BYTES;
server.shutdown_asap = 0;
server.repl_ping_slave_period = REDIS_REPL_PING_SLAVE_PERIOD;
server.repl_timeout = REDIS_REPL_TIMEOUT;
......@@ -1555,24 +1558,28 @@ void adjustOpenFilesLimit(void) {
redisLog(REDIS_WARNING,"Your current 'ulimit -n' "
"of %llu is not enough for Redis to start. "
"Please increase your open file limit to at least "
"%llu. Exiting.", oldlimit, maxfiles);
"%llu. Exiting.",
(unsigned long long) oldlimit,
(unsigned long long) maxfiles);
exit(1);
}
redisLog(REDIS_WARNING,"You requested maxclients of %d "
"requiring at least %llu max file descriptors.",
old_maxclients, maxfiles);
old_maxclients,
(unsigned long long) maxfiles);
redisLog(REDIS_WARNING,"Redis can't set maximum open files "
"to %llu because of OS error: %s.",
maxfiles, strerror(setrlimit_error));
(unsigned long long) maxfiles, strerror(setrlimit_error));
redisLog(REDIS_WARNING,"Current maximum open files is %llu. "
"maxclients has been reduced to %d to compensate for "
"low ulimit. "
"If you need higher maxclients increase 'ulimit -n'.",
oldlimit, server.maxclients);
(unsigned long long) oldlimit, server.maxclients);
} else {
redisLog(REDIS_NOTICE,"Increased maximum number of open files "
"to %llu (it was originally set to %llu).",
maxfiles, oldlimit);
(unsigned long long) maxfiles,
(unsigned long long) oldlimit);
}
}
}
......
......@@ -312,6 +312,9 @@
#define REDIS_ZSET_MAX_ZIPLIST_ENTRIES 128
#define REDIS_ZSET_MAX_ZIPLIST_VALUE 64
/* HyperLogLog defines */
#define REDIS_DEFAULT_HLL_SPARSE_MAX_BYTES 3000
/* Sets operations codes */
#define REDIS_OP_UNION 0
#define REDIS_OP_DIFF 1
......@@ -809,6 +812,7 @@ struct redisServer {
size_t set_max_intset_entries;
size_t zset_max_ziplist_entries;
size_t zset_max_ziplist_value;
size_t hll_sparse_max_bytes;
time_t unixtime; /* Unix time sampled every cron cycle. */
long long mstime; /* Like 'unixtime' but with milliseconds resolution. */
/* Pubsub */
......@@ -1147,8 +1151,8 @@ void zslFree(zskiplist *zsl);
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj);
unsigned char *zzlInsert(unsigned char *zl, robj *ele, double score);
int zslDelete(zskiplist *zsl, double score, robj *obj);
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec range);
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec range);
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range);
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range);
double zzlGetScore(unsigned char *sptr);
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr);
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr);
......@@ -1396,11 +1400,13 @@ void zrevrangebyscoreCommand(redisClient *c);
void zrangebylexCommand(redisClient *c);
void zrevrangebylexCommand(redisClient *c);
void zcountCommand(redisClient *c);
void zlexcountCommand(redisClient *c);
void zrevrangeCommand(redisClient *c);
void zcardCommand(redisClient *c);
void zremCommand(redisClient *c);
void zscoreCommand(redisClient *c);
void zremrangebyscoreCommand(redisClient *c);
void zremrangebylexCommand(redisClient *c);
void multiCommand(redisClient *c);
void execCommand(redisClient *c);
void discardCommand(redisClient *c);
......@@ -1460,7 +1466,7 @@ void pfselftestCommand(redisClient *c);
void pfaddCommand(redisClient *c);
void pfcountCommand(redisClient *c);
void pfmergeCommand(redisClient *c);
void pfgetregCommand(redisClient *c);
void pfdebugCommand(redisClient *c);
#if defined(__GNUC__)
void *calloc(size_t count, size_t size) __attribute__ ((deprecated));
......
......@@ -52,6 +52,9 @@
#include "redis.h"
#include <math.h>
static int zslLexValueGteMin(robj *value, zlexrangespec *spec);
static int zslLexValueLteMax(robj *value, zlexrangespec *spec);
zskiplistNode *zslCreateNode(int level, double score, robj *obj) {
zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
zn->score = score;
......@@ -235,18 +238,18 @@ int zslIsInRange(zskiplist *zsl, zrangespec *range) {
/* Find the first node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec range) {
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,&range)) return NULL;
if (!zslIsInRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslValueGteMin(x->level[i].forward->score,&range))
!zslValueGteMin(x->level[i].forward->score,range))
x = x->level[i].forward;
}
......@@ -255,24 +258,24 @@ zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec range) {
redisAssert(x != NULL);
/* Check if score <= max. */
if (!zslValueLteMax(x->score,&range)) return NULL;
if (!zslValueLteMax(x->score,range)) return NULL;
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec range) {
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,&range)) return NULL;
if (!zslIsInRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslValueLteMax(x->level[i].forward->score,&range))
zslValueLteMax(x->level[i].forward->score,range))
x = x->level[i].forward;
}
......@@ -280,7 +283,7 @@ zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec range) {
redisAssert(x != NULL);
/* Check if score >= min. */
if (!zslValueGteMin(x->score,&range)) return NULL;
if (!zslValueGteMin(x->score,range)) return NULL;
return x;
}
......@@ -288,16 +291,16 @@ zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec range) {
* Min and max are inclusive, so a score >= min || score <= max is deleted.
* Note that this function takes the reference to the hash table view of the
* sorted set, in order to remove the elements from the hash table too. */
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec range, dict *dict) {
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (range.minex ?
x->level[i].forward->score <= range.min :
x->level[i].forward->score < range.min))
while (x->level[i].forward && (range->minex ?
x->level[i].forward->score <= range->min :
x->level[i].forward->score < range->min))
x = x->level[i].forward;
update[i] = x;
}
......@@ -306,7 +309,38 @@ unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec range, dict *dict
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x && (range.maxex ? x->score < range.max : x->score <= range.max)) {
while (x &&
(range->maxex ? x->score < range->max : x->score <= range->max))
{
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
zslFreeNode(x);
removed++;
x = next;
}
return removed;
}
unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
!zslLexValueGteMin(x->level[i].forward->obj,range))
x = x->level[i].forward;
update[i] = x;
}
/* Current node is the last with score < or <= min. */
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x && zslLexValueLteMax(x->obj,range)) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
......@@ -444,7 +478,7 @@ static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
* respectively if the item is exclusive or inclusive. REDIS_OK will be
* returned.
*
* If the stirng is not a valid range REDIS_ERR is returned, and the value
* If the string is not a valid range REDIS_ERR is returned, and the value
* of *dest and *ex is undefined. */
int zslParseLexRangeItem(robj *item, robj **dest, int *ex) {
char *c = item->ptr;
......@@ -475,8 +509,14 @@ int zslParseLexRangeItem(robj *item, robj **dest, int *ex) {
}
}
/* Populate the rangespec according to the objects min and max. */
/* Populate the rangespec according to the objects min and max.
*
* Return REDIS_OK on success. On error REDIS_ERR is returned.
* When OK is returned the structure must be freed with zslFreeLexRange(),
* otherwise no release is needed. */
static int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
/* The range can't be valid if objects are integer encoded.
* Every item must start with ( or [. */
if (min->encoding == REDIS_ENCODING_INT ||
max->encoding == REDIS_ENCODING_INT) return REDIS_ERR;
......@@ -491,6 +531,13 @@ static int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
}
}
/* Free a lex range structure, must be called only after zelParseLexRange()
* populated the structure with success (REDIS_OK returned). */
void zslFreeLexRange(zlexrangespec *spec) {
decrRefCount(spec->min);
decrRefCount(spec->max);
}
/* This is just a wrapper to compareStringObjects() that is able to
* handle shared.minstring and shared.maxstring as the equivalent of
* -inf and +inf for strings */
......@@ -534,18 +581,18 @@ int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) {
/* Find the first node that is contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec range) {
zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInLexRange(zsl,&range)) return NULL;
if (!zslIsInLexRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslLexValueGteMin(x->level[i].forward->obj,&range))
!zslLexValueGteMin(x->level[i].forward->obj,range))
x = x->level[i].forward;
}
......@@ -554,24 +601,24 @@ zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec range) {
redisAssert(x != NULL);
/* Check if score <= max. */
if (!zslLexValueLteMax(x->obj,&range)) return NULL;
if (!zslLexValueLteMax(x->obj,range)) return NULL;
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec range) {
zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInLexRange(zsl,&range)) return NULL;
if (!zslIsInLexRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslLexValueLteMax(x->level[i].forward->obj,&range))
zslLexValueLteMax(x->level[i].forward->obj,range))
x = x->level[i].forward;
}
......@@ -579,7 +626,7 @@ zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec range) {
redisAssert(x != NULL);
/* Check if score >= min. */
if (!zslLexValueGteMin(x->obj,&range)) return NULL;
if (!zslLexValueGteMin(x->obj,range)) return NULL;
return x;
}
......@@ -717,21 +764,21 @@ int zzlIsInRange(unsigned char *zl, zrangespec *range) {
/* Find pointer to the first element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec range) {
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,&range)) return NULL;
if (!zzlIsInRange(zl,range)) return NULL;
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueGteMin(score,&range)) {
if (zslValueGteMin(score,range)) {
/* Check if score <= max. */
if (zslValueLteMax(score,&range))
if (zslValueLteMax(score,range))
return eptr;
return NULL;
}
......@@ -745,21 +792,21 @@ unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec range) {
/* Find pointer to the last element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec range) {
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,&range)) return NULL;
if (!zzlIsInRange(zl,range)) return NULL;
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueLteMax(score,&range)) {
if (zslValueLteMax(score,range)) {
/* Check if score >= min. */
if (zslValueGteMin(score,&range))
if (zslValueGteMin(score,range))
return eptr;
return NULL;
}
......@@ -816,16 +863,16 @@ int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) {
/* Find pointer to the first element contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec range) {
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
/* If everything is out of range, return early. */
if (!zzlIsInLexRange(zl,&range)) return NULL;
if (!zzlIsInLexRange(zl,range)) return NULL;
while (eptr != NULL) {
if (zzlLexValueGteMin(eptr,&range)) {
if (zzlLexValueGteMin(eptr,range)) {
/* Check if score <= max. */
if (zzlLexValueLteMax(eptr,&range))
if (zzlLexValueLteMax(eptr,range))
return eptr;
return NULL;
}
......@@ -841,16 +888,16 @@ unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec range) {
/* Find pointer to the last element contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec range) {
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
/* If everything is out of range, return early. */
if (!zzlIsInLexRange(zl,&range)) return NULL;
if (!zzlIsInLexRange(zl,range)) return NULL;
while (eptr != NULL) {
if (zzlLexValueLteMax(eptr,&range)) {
if (zzlLexValueLteMax(eptr,range)) {
/* Check if score >= min. */
if (zzlLexValueGteMin(eptr,&range))
if (zzlLexValueGteMin(eptr,range))
return eptr;
return NULL;
}
......@@ -964,7 +1011,7 @@ unsigned char *zzlInsert(unsigned char *zl, robj *ele, double score) {
return zl;
}
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec range, unsigned long *deleted) {
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) {
unsigned char *eptr, *sptr;
double score;
unsigned long num = 0;
......@@ -978,7 +1025,34 @@ unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec range, unsign
* byte and ziplistNext will return NULL. */
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
score = zzlGetScore(sptr);
if (zslValueLteMax(score,&range)) {
if (zslValueLteMax(score,range)) {
/* Delete both the element and the score. */
zl = ziplistDelete(zl,&eptr);
zl = ziplistDelete(zl,&eptr);
num++;
} else {
/* No longer in range. */
break;
}
}
if (deleted != NULL) *deleted = num;
return zl;
}
unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) {
unsigned char *eptr, *sptr;
unsigned long num = 0;
if (deleted != NULL) *deleted = 0;
eptr = zzlFirstInLexRange(zl,range);
if (eptr == NULL) return zl;
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
* byte and ziplistNext will return NULL. */
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
if (zzlLexValueLteMax(eptr,range)) {
/* Delete both the element and the score. */
zl = ziplistDelete(zl,&eptr);
zl = ziplistDelete(zl,&eptr);
......@@ -1300,31 +1374,86 @@ void zremCommand(redisClient *c) {
addReplyLongLong(c,deleted);
}
void zremrangebyscoreCommand(redisClient *c) {
/* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */
#define ZRANGE_RANK 0
#define ZRANGE_SCORE 1
#define ZRANGE_LEX 2
void zremrangeGenericCommand(redisClient *c, int rangetype) {
robj *key = c->argv[1];
robj *zobj;
zrangespec range;
int keyremoved = 0;
unsigned long deleted;
zrangespec range;
zlexrangespec lexrange;
long start, end, llen;
/* Parse the range arguments. */
if (zslParseRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a float");
return;
/* Step 1: Parse the range. */
if (rangetype == ZRANGE_RANK) {
if ((getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != REDIS_OK))
return;
} else if (rangetype == ZRANGE_SCORE) {
if (zslParseRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a float");
return;
}
} else if (rangetype == ZRANGE_LEX) {
if (zslParseLexRange(c->argv[2],c->argv[3],&lexrange) != REDIS_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
}
/* Step 2: Lookup & range sanity checks if needed. */
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
checkType(c,zobj,REDIS_ZSET)) goto cleanup;
if (rangetype == ZRANGE_RANK) {
/* Sanitize indexes. */
llen = zsetLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.czero);
goto cleanup;
}
if (end >= llen) end = llen-1;
}
/* Step 3: Perform the range deletion operation. */
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,range,&deleted);
switch(rangetype) {
case ZRANGE_RANK:
zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted);
break;
case ZRANGE_SCORE:
zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,&range,&deleted);
break;
case ZRANGE_LEX:
zobj->ptr = zzlDeleteRangeByLex(zobj->ptr,&lexrange,&deleted);
break;
}
if (zzlLength(zobj->ptr) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
deleted = zslDeleteRangeByScore(zs->zsl,range,zs->dict);
switch(rangetype) {
case ZRANGE_RANK:
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
break;
case ZRANGE_SCORE:
deleted = zslDeleteRangeByScore(zs->zsl,&range,zs->dict);
break;
case ZRANGE_LEX:
deleted = zslDeleteRangeByLex(zs->zsl,&lexrange,zs->dict);
break;
}
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) {
dbDelete(c->db,key);
......@@ -1334,74 +1463,31 @@ void zremrangebyscoreCommand(redisClient *c) {
redisPanic("Unknown sorted set encoding");
}
/* Step 4: Notifications and reply. */
if (deleted) {
char *event[3] = {"zremrangebyrank","zremrangebyscore","zremrangebylex"};
signalModifiedKey(c->db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,"zrembyscore",key,c->db->id);
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,event[rangetype],key,c->db->id);
if (keyremoved)
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id);
}
server.dirty += deleted;
addReplyLongLong(c,deleted);
cleanup:
if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange);
}
void zremrangebyrankCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
long start;
long end;
int llen;
unsigned long deleted;
int keyremoved = 0;
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != REDIS_OK)) return;
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
/* Sanitize indexes. */
llen = zsetLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.czero);
return;
}
if (end >= llen) end = llen-1;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
/* Correct for 1-based rank. */
zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted);
if (zzlLength(zobj->ptr) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zremrangeGenericCommand(c,ZRANGE_RANK);
}
/* Correct for 1-based rank. */
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else {
redisPanic("Unknown sorted set encoding");
}
void zremrangebyscoreCommand(redisClient *c) {
zremrangeGenericCommand(c,ZRANGE_SCORE);
}
if (deleted) {
signalModifiedKey(c->db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,"zrembyrank",key,c->db->id);
if (keyremoved)
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id);
}
server.dirty += deleted;
addReplyLongLong(c,deleted);
void zremrangebylexCommand(redisClient *c) {
zremrangeGenericCommand(c,ZRANGE_LEX);
}
typedef struct {
......@@ -2147,9 +2233,9 @@ void genericZrangebyscoreCommand(redisClient *c, int reverse) {
/* If reversed, get the last node in range as starting point. */
if (reverse) {
eptr = zzlLastInRange(zl,range);
eptr = zzlLastInRange(zl,&range);
} else {
eptr = zzlFirstInRange(zl,range);
eptr = zzlFirstInRange(zl,&range);
}
/* No "first" element in the specified interval. */
......@@ -2215,9 +2301,9 @@ void genericZrangebyscoreCommand(redisClient *c, int reverse) {
/* If reversed, get the last node in range as starting point. */
if (reverse) {
ln = zslLastInRange(zsl,range);
ln = zslLastInRange(zsl,&range);
} else {
ln = zslFirstInRange(zsl,range);
ln = zslFirstInRange(zsl,&range);
}
/* No "first" element in the specified interval. */
......@@ -2304,7 +2390,7 @@ void zcountCommand(redisClient *c) {
double score;
/* Use the first element in range as the starting point */
eptr = zzlFirstInRange(zl,range);
eptr = zzlFirstInRange(zl,&range);
/* No "first" element */
if (eptr == NULL) {
......@@ -2336,7 +2422,85 @@ void zcountCommand(redisClient *c) {
unsigned long rank;
/* Find first element in range */
zn = zslFirstInRange(zsl, range);
zn = zslFirstInRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->obj);
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->obj);
count -= (zsl->length - rank);
}
}
} else {
redisPanic("Unknown sorted set encoding");
}
addReplyLongLong(c, count);
}
void zlexcountCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
zlexrangespec range;
int count = 0;
/* Parse the range arguments */
if (zslParseLexRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
/* Lookup the sorted set */
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
checkType(c, zobj, REDIS_ZSET))
{
zslFreeLexRange(&range);
return;
}
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
/* Use the first element in range as the starting point */
eptr = zzlFirstInLexRange(zl,&range);
/* No "first" element */
if (eptr == NULL) {
zslFreeLexRange(&range);
addReply(c, shared.czero);
return;
}
/* First element is in range */
sptr = ziplistNext(zl,eptr);
redisAssertWithInfo(c,zobj,zzlLexValueLteMax(eptr,&range));
/* Iterate over elements in range */
while (eptr) {
/* Abort when the node is no longer in range. */
if (!zzlLexValueLteMax(eptr,&range)) {
break;
} else {
count++;
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *zn;
unsigned long rank;
/* Find first element in range */
zn = zslFirstInLexRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
......@@ -2344,7 +2508,7 @@ void zcountCommand(redisClient *c) {
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInRange(zsl, range);
zn = zslLastInLexRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
......@@ -2356,6 +2520,7 @@ void zcountCommand(redisClient *c) {
redisPanic("Unknown sorted set encoding");
}
zslFreeLexRange(&range);
addReplyLongLong(c, count);
}
......@@ -2395,6 +2560,7 @@ void genericZrangebylexCommand(redisClient *c, int reverse) {
(getLongFromObjectOrReply(c, c->argv[pos+2], &limit, NULL) != REDIS_OK)) return;
pos += 3; remaining -= 3;
} else {
zslFreeLexRange(&range);
addReply(c,shared.syntaxerr);
return;
}
......@@ -2403,7 +2569,11 @@ void genericZrangebylexCommand(redisClient *c, int reverse) {
/* Ok, lookup the key and get the range */
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
checkType(c,zobj,REDIS_ZSET))
{
zslFreeLexRange(&range);
return;
}
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
......@@ -2414,14 +2584,15 @@ void genericZrangebylexCommand(redisClient *c, int reverse) {
/* If reversed, get the last node in range as starting point. */
if (reverse) {
eptr = zzlLastInLexRange(zl,range);
eptr = zzlLastInLexRange(zl,&range);
} else {
eptr = zzlFirstInLexRange(zl,range);
eptr = zzlFirstInLexRange(zl,&range);
}
/* No "first" element in the specified interval. */
if (eptr == NULL) {
addReply(c, shared.emptymultibulk);
zslFreeLexRange(&range);
return;
}
......@@ -2477,14 +2648,15 @@ void genericZrangebylexCommand(redisClient *c, int reverse) {
/* If reversed, get the last node in range as starting point. */
if (reverse) {
ln = zslLastInLexRange(zsl,range);
ln = zslLastInLexRange(zsl,&range);
} else {
ln = zslFirstInLexRange(zsl,range);
ln = zslFirstInLexRange(zsl,&range);
}
/* No "first" element in the specified interval. */
if (ln == NULL) {
addReply(c, shared.emptymultibulk);
zslFreeLexRange(&range);
return;
}
......@@ -2525,6 +2697,7 @@ void genericZrangebylexCommand(redisClient *c, int reverse) {
redisPanic("Unknown sorted set encoding");
}
zslFreeLexRange(&range);
setDeferredMultiBulkLength(c, replylen, rangelen);
}
......
......@@ -39,6 +39,82 @@ start_server {tags {"hll"}} {
set res
} {5 10}
test {HyperLogLogs are promote from sparse to dense} {
r del hll
r config set hll-sparse-max-bytes 3000
set n 0
while {$n < 100000} {
set elements {}
for {set j 0} {$j < 100} {incr j} {lappend elements [expr rand()]}
incr n 100
r pfadd hll {*}$elements
set card [r pfcount hll]
set err [expr {abs($card-$n)}]
assert {$err < (double($card)/100)*5}
if {$n < 1000} {
assert {[r pfdebug encoding hll] eq {sparse}}
} elseif {$n > 10000} {
assert {[r pfdebug encoding hll] eq {dense}}
}
}
}
test {HyperLogLog sparse encoding stress test} {
for {set x 0} {$x < 1000} {incr x} {
r del hll1 hll2
set numele [randomInt 100]
set elements {}
for {set j 0} {$j < $numele} {incr j} {
lappend elements [expr rand()]
}
# Force dense representation of hll2
r pfadd hll2
r pfdebug todense hll2
r pfadd hll1 {*}$elements
r pfadd hll2 {*}$elements
assert {[r pfdebug encoding hll1] eq {sparse}}
assert {[r pfdebug encoding hll2] eq {dense}}
# Cardinality estimated should match exactly.
assert {[r pfcount hll1] eq [r pfcount hll2]}
}
}
test {Corrupted sparse HyperLogLogs are detected: Additionl at tail} {
r del hll
r pfadd hll a b c
r append hll "hello"
set e {}
catch {r pfcount hll} e
set e
} {*INVALIDOBJ*}
test {Corrupted sparse HyperLogLogs are detected: Broken magic} {
r del hll
r pfadd hll a b c
r setrange hll 0 "0123"
set e {}
catch {r pfcount hll} e
set e
} {*WRONGTYPE*}
test {Corrupted sparse HyperLogLogs are detected: Invalid encoding} {
r del hll
r pfadd hll a b c
r setrange hll 4 "x"
set e {}
catch {r pfcount hll} e
set e
} {*WRONGTYPE*}
test {Corrupted dense HyperLogLogs are detected: Wrong length} {
r del hll
r pfadd hll a b c
r setrange hll 4 "\x00"
set e {}
catch {r pfcount hll} e
set e
} {*WRONGTYPE*}
test {PFADD, PFCOUNT, PFMERGE type checking works} {
r set foo bar
catch {r pfadd foo 1} e
......@@ -60,9 +136,24 @@ start_server {tags {"hll"}} {
r pfcount hll
} {5}
test {PFGETREG returns the HyperLogLog raw registers} {
test {PFCOUNT multiple-keys merge returns cardinality of union} {
r del hll1 hll2 hll3
for {set x 1} {$x < 10000} {incr x} {
# Force dense representation of hll2
r pfadd hll1 "foo-$x"
r pfadd hll2 "bar-$x"
r pfadd hll3 "zap-$x"
set card [r pfcount hll1 hll2 hll3]
set realcard [expr {$x*3}]
set err [expr {abs($card-$realcard)}]
assert {$err < (double($card)/100)*5}
}
}
test {PFDEBUG GETREG returns the HyperLogLog raw registers} {
r del hll
r pfadd hll 1 2 3
llength [r pfgetreg hll]
llength [r pfdebug getreg hll]
} {16384}
}
......@@ -296,6 +296,62 @@ start_server {tags {"zset"}} {
assert_error "*not*float*" {r zrangebyscore fooz 1 NaN}
}
proc create_default_lex_zset {} {
create_zset zset {0 alpha 0 bar 0 cool 0 down
0 elephant 0 foo 0 great 0 hill
0 omega}
}
test "ZRANGEBYLEX/ZREVRANGEBYLEX/ZCOUNT basics" {
create_default_lex_zset
# inclusive range
assert_equal {alpha bar cool} [r zrangebylex zset - \[cool]
assert_equal {bar cool down} [r zrangebylex zset \[bar \[down]
assert_equal {great hill omega} [r zrangebylex zset \[g +]
assert_equal {cool bar alpha} [r zrevrangebylex zset \[cool -]
assert_equal {down cool bar} [r zrevrangebylex zset \[down \[bar]
assert_equal {omega hill great foo elephant down} [r zrevrangebylex zset + \[d]
assert_equal 3 [r zlexcount zset \[ele \[h]
# exclusive range
assert_equal {alpha bar} [r zrangebylex zset - (cool]
assert_equal {cool} [r zrangebylex zset (bar (down]
assert_equal {hill omega} [r zrangebylex zset (great +]
assert_equal {bar alpha} [r zrevrangebylex zset (cool -]
assert_equal {cool} [r zrevrangebylex zset (down (bar]
assert_equal {omega hill} [r zrevrangebylex zset + (great]
assert_equal 2 [r zlexcount zset (ele (great]
# inclusive and exclusive
assert_equal {} [r zrangebylex zset (az (b]
assert_equal {} [r zrangebylex zset (z +]
assert_equal {} [r zrangebylex zset - \[aaaa]
assert_equal {} [r zrevrangebylex zset \[elez \[elex]
assert_equal {} [r zrevrangebylex zset (hill (omega]
}
test "ZRANGEBYSLEX with LIMIT" {
create_default_lex_zset
assert_equal {alpha bar} [r zrangebylex zset - \[cool LIMIT 0 2]
assert_equal {bar cool} [r zrangebylex zset - \[cool LIMIT 1 2]
assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 0 0]
assert_equal {} [r zrangebylex zset \[bar \[down LIMIT 2 0]
assert_equal {bar} [r zrangebylex zset \[bar \[down LIMIT 0 1]
assert_equal {cool} [r zrangebylex zset \[bar \[down LIMIT 1 1]
assert_equal {bar cool down} [r zrangebylex zset \[bar \[down LIMIT 0 100]
assert_equal {omega hill great foo elephant} [r zrevrangebylex zset + \[d LIMIT 0 5]
assert_equal {omega hill great foo} [r zrevrangebylex zset + \[d LIMIT 0 4]
}
test "ZRANGEBYLEX with invalid lex range specifiers" {
assert_error "*not*string*" {r zrangebylex fooz foo bar}
assert_error "*not*string*" {r zrangebylex fooz \[foo bar}
assert_error "*not*string*" {r zrangebylex fooz foo \[bar}
assert_error "*not*string*" {r zrangebylex fooz +x \[bar}
assert_error "*not*string*" {r zrangebylex fooz -x \[bar}
}
test "ZREMRANGEBYSCORE basics" {
proc remrangebyscore {min max} {
create_zset zset {1 a 2 b 3 c 4 d 5 e}
......@@ -708,6 +764,111 @@ start_server {tags {"zset"}} {
assert_equal {} $err
}
test "ZRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" {
set lexset {}
r del zset
for {set j 0} {$j < $elements} {incr j} {
set e [randstring 0 30 alpha]
lappend lexset $e
r zadd zset 0 $e
}
set lexset [lsort -unique $lexset]
for {set j 0} {$j < 100} {incr j} {
set min [randstring 0 30 alpha]
set max [randstring 0 30 alpha]
set mininc [randomInt 2]
set maxinc [randomInt 2]
if {$mininc} {set cmin "\[$min"} else {set cmin "($min"}
if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"}
set rev [randomInt 2]
if {$rev} {
set cmd zrevrangebylex
} else {
set cmd zrangebylex
}
# Make sure data is the same in both sides
assert {[r zrange zset 0 -1] eq $lexset}
# Get the Redis output
set output [r $cmd zset $cmin $cmax]
if {$rev} {
set outlen [r zlexcount zset $cmax $cmin]
} else {
set outlen [r zlexcount zset $cmin $cmax]
}
# Compute the same output via Tcl
set o {}
set copy $lexset
if {(!$rev && [string compare $min $max] > 0) ||
($rev && [string compare $max $min] > 0)} {
# Empty output when ranges are inverted.
} else {
if {$rev} {
# Invert the Tcl array using Redis itself.
set copy [r zrevrange zset 0 -1]
# Invert min / max as well
lassign [list $min $max $mininc $maxinc] \
max min maxinc mininc
}
foreach e $copy {
set mincmp [string compare $e $min]
set maxcmp [string compare $e $max]
if {
($mininc && $mincmp >= 0 || !$mininc && $mincmp > 0)
&&
($maxinc && $maxcmp <= 0 || !$maxinc && $maxcmp < 0)
} {
lappend o $e
}
}
}
assert {$o eq $output}
assert {$outlen eq [llength $output]}
}
}
test "ZREMRANGEBYLEX fuzzy test, 100 ranges in $elements element sorted set - $encoding" {
set lexset {}
r del zset zsetcopy
for {set j 0} {$j < $elements} {incr j} {
set e [randstring 0 30 alpha]
lappend lexset $e
r zadd zset 0 $e
}
set lexset [lsort -unique $lexset]
for {set j 0} {$j < 100} {incr j} {
# Copy...
r zunionstore zsetcopy 1 zset
set lexsetcopy $lexset
set min [randstring 0 30 alpha]
set max [randstring 0 30 alpha]
set mininc [randomInt 2]
set maxinc [randomInt 2]
if {$mininc} {set cmin "\[$min"} else {set cmin "($min"}
if {$maxinc} {set cmax "\[$max"} else {set cmax "($max"}
# Make sure data is the same in both sides
assert {[r zrange zset 0 -1] eq $lexset}
# Get the range we are going to remove
set torem [r zrangebylex zset $cmin $cmax]
set toremlen [r zlexcount zset $cmin $cmax]
r zremrangebylex zsetcopy $cmin $cmax
set output [r zrange zsetcopy 0 -1]
# Remove the range with Tcl from the original list
if {$toremlen} {
set first [lsearch -exact $lexsetcopy [lindex $torem 0]]
set last [expr {$first+$toremlen-1}]
set lexsetcopy [lreplace $lexsetcopy $first $last]
}
assert {$lexsetcopy eq $output}
}
}
test "ZSETs skiplist implementation backlink consistency test - $encoding" {
set diff 0
for {set j 0} {$j < $elements} {incr j} {
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment