Commit a01bda03 authored by zeroday's avatar zeroday
Browse files

Merge pull request #294 from nodemcu/json

Json branch merged to master
parents fa7cf878 808a359e
......@@ -7,6 +7,7 @@ version 0.9.5
###A lua based firmware for wifi-soc esp8266
Build on [ESP8266 sdk 0.9.5](http://bbs.espressif.com/viewtopic.php?f=5&t=154)<br />
Lua core based on [eLua project](http://www.eluaproject.net/)<br />
cjson based on [lua-cjson](https://github.com/mpx/lua-cjson)<br />
File system based on [spiffs](https://github.com/pellepl/spiffs)<br />
Open source development kit for NodeMCU [nodemcu-devkit](https://github.com/nodemcu/nodemcu-devkit)<br />
Flash tool for NodeMCU [nodemcu-flasher](https://github.com/nodemcu/nodemcu-flasher)<br />
......@@ -34,6 +35,10 @@ Tencent QQ group: 309957875<br />
- cross compiler (done)
# Change log
2015-03-17<br />
add cjson module, only cjson.encode() and cjson.decode() is implemented.<br />
read doc [here](https://github.com/nodemcu/nodemcu-firmware/blob/json/app/cjson/manual.txt)
2015-03-15<br />
bugs fixed: #239, #273.<br />
reduce coap module memory usage, add coap module to default built.
......
......@@ -36,7 +36,8 @@ SUBDIRS= \
smart \
wofs \
modules \
spiffs
spiffs \
cjson
endif # } PDIR
......@@ -84,6 +85,7 @@ COMPONENTS_eagle.app.v6 = \
smart/smart.a \
wofs/wofs.a \
spiffs/spiffs.a \
cjson/libcjson.a \
modules/libmodules.a
LINKFLAGS_eagle.app.v6 = \
......
# If Lua is installed in a non-standard location, please set the LUA_DIR
# environment variable to point to prefix for the install. Eg:
# Unix: export LUA_DIR=/home/user/pkg
# Windows: set LUA_DIR=c:\lua51
project(lua-cjson C)
cmake_minimum_required(VERSION 2.6)
option(USE_INTERNAL_FPCONV "Use internal strtod() / g_fmt() code for performance")
option(MULTIPLE_THREADS "Support multi-threaded apps with internal fpconv - recommended" ON)
if(NOT CMAKE_BUILD_TYPE)
set(CMAKE_BUILD_TYPE Release CACHE STRING
"Choose the type of build, options are: None Debug Release RelWithDebInfo MinSizeRel."
FORCE)
endif()
find_package(Lua51 REQUIRED)
include_directories(${LUA_INCLUDE_DIR})
if(NOT USE_INTERNAL_FPCONV)
# Use libc number conversion routines (strtod(), sprintf())
set(FPCONV_SOURCES fpconv.c)
else()
# Use internal number conversion routines
add_definitions(-DUSE_INTERNAL_FPCONV)
set(FPCONV_SOURCES g_fmt.c dtoa.c)
include(TestBigEndian)
TEST_BIG_ENDIAN(IEEE_BIG_ENDIAN)
if(IEEE_BIG_ENDIAN)
add_definitions(-DIEEE_BIG_ENDIAN)
endif()
if(MULTIPLE_THREADS)
set(CMAKE_THREAD_PREFER_PTHREAD TRUE)
find_package(Threads REQUIRED)
if(NOT CMAKE_USE_PTHREADS_INIT)
message(FATAL_ERROR
"Pthreads not found - required by MULTIPLE_THREADS option")
endif()
add_definitions(-DMULTIPLE_THREADS)
endif()
endif()
# Handle platforms missing isinf() macro (Eg, some Solaris systems).
include(CheckSymbolExists)
CHECK_SYMBOL_EXISTS(isinf math.h HAVE_ISINF)
if(NOT HAVE_ISINF)
add_definitions(-DUSE_INTERNAL_ISINF)
endif()
set(_MODULE_LINK "${CMAKE_THREAD_LIBS_INIT}")
get_filename_component(_lua_lib_dir ${LUA_LIBRARY} PATH)
if(APPLE)
set(CMAKE_SHARED_MODULE_CREATE_C_FLAGS
"${CMAKE_SHARED_MODULE_CREATE_C_FLAGS} -undefined dynamic_lookup")
endif()
if(WIN32)
# Win32 modules need to be linked to the Lua library.
set(_MODULE_LINK ${LUA_LIBRARY} ${_MODULE_LINK})
set(_lua_module_dir "${_lua_lib_dir}")
# Windows sprintf()/strtod() handle NaN/inf differently. Not supported.
add_definitions(-DDISABLE_INVALID_NUMBERS)
else()
set(_lua_module_dir "${_lua_lib_dir}/lua/5.1")
endif()
add_library(cjson MODULE lua_cjson.c strbuf.c ${FPCONV_SOURCES})
set_target_properties(cjson PROPERTIES PREFIX "")
target_link_libraries(cjson ${_MODULE_LINK})
install(TARGETS cjson DESTINATION "${_lua_module_dir}")
# vi:ai et sw=4 ts=4:
Copyright (c) 2010-2012 Mark Pulford <mark@kyne.com.au>
2015 Zeroday Hong <zeroday@nodemcu.com> nodemcu.com
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
#############################################################
# Required variables for each makefile
# Discard this section from all parent makefiles
# Expected variables (with automatic defaults):
# CSRCS (all "C" files in the dir)
# SUBDIRS (all subdirs with a Makefile)
# GEN_LIBS - list of libs to be generated ()
# GEN_IMAGES - list of images to be generated ()
# COMPONENTS_xxx - a list of libs/objs in the form
# subdir/lib to be extracted and rolled up into
# a generated lib/image xxx.a ()
#
ifndef PDIR
GEN_LIBS = libcjson.a
endif
#############################################################
# Configuration i.e. compile options etc.
# Target specific stuff (defines etc.) goes in here!
# Generally values applying to a tree are captured in the
# makefile at its root level - these are then overridden
# for a subtree within the makefile rooted therein
#
#DEFINES +=
#############################################################
# Recursion Magic - Don't touch this!!
#
# Each subtree potentially has an include directory
# corresponding to the common APIs applicable to modules
# rooted at that subtree. Accordingly, the INCLUDE PATH
# of a module can only contain the include directories up
# its parent path, and not its siblings
#
# Required for each makefile to inherit from the parent
#
INCLUDES := $(INCLUDES) -I $(PDIR)include
INCLUDES += -I ./
INCLUDES += -I ../libc
PDIR := ../$(PDIR)
sinclude $(PDIR)Makefile
The following people have helped with bug reports, testing and/or
suggestions:
- Louis-Philippe Perron (@loopole)
- Ondřej Jirman
- Steve Donovan <steve.j.donovan@gmail.com>
- Zhang "agentzh" Yichun <agentzh@gmail.com>
Thanks!
parser:
- call parse_value
- next_token
? <EOF> nop.
parse_value:
- next_token
? <OBJ_BEGIN> call parse_object.
? <ARR_BEGIN> call parse_array.
? <STRING> push. return.
? <BOOLEAN> push. return.
? <NULL> push. return.
? <NUMBER> push. return.
parse_object:
- push table
- next_token
? <STRING> push.
- next_token
? <COLON> nop.
- call parse_value
- set table
- next_token
? <OBJ_END> return.
? <COMMA> loop parse_object.
parse_array:
- push table
- call parse_value
- table append
- next_token
? <COMMA> loop parse_array.
? ] return.
next_token:
- check next character
? { return <OBJ_BEGIN>
? } return <OBJ_END>
? [ return <ARR_BEGIN>
? ] return <ARR_END>
? , return <COMMA>
? : return <COLON>
? [-0-9] gobble number. return <NUMBER>
? " gobble string. return <STRING>
? [ \t\n] eat whitespace.
? n Check "null". return <NULL> or <UNKNOWN>
? t Check "true". return <BOOLEAN> or <UNKNOWN>
? f Check "false". return <BOOLEAN> or <UNKNOWN>
? . return <UNKNOWN>
? \0 return <END>
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 2000, 2001 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/* Please send bug reports to David M. Gay (dmg at acm dot org,
* with " at " changed at "@" and " dot " changed to "."). */
/* On a machine with IEEE extended-precision registers, it is
* necessary to specify double-precision (53-bit) rounding precision
* before invoking strtod or dtoa. If the machine uses (the equivalent
* of) Intel 80x87 arithmetic, the call
* _control87(PC_53, MCW_PC);
* does this with many compilers. Whether this or another call is
* appropriate depends on the compiler; for this to work, it may be
* necessary to #include "float.h" or another system-dependent header
* file.
*/
/* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
*
* This strtod returns a nearest machine number to the input decimal
* string (or sets errno to ERANGE). With IEEE arithmetic, ties are
* broken by the IEEE round-even rule. Otherwise ties are broken by
* biased rounding (add half and chop).
*
* Inspired loosely by William D. Clinger's paper "How to Read Floating
* Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
*
* Modifications:
*
* 1. We only require IEEE, IBM, or VAX double-precision
* arithmetic (not IEEE double-extended).
* 2. We get by with floating-point arithmetic in a case that
* Clinger missed -- when we're computing d * 10^n
* for a small integer d and the integer n is not too
* much larger than 22 (the maximum integer k for which
* we can represent 10^k exactly), we may be able to
* compute (d*10^k) * 10^(e-k) with just one roundoff.
* 3. Rather than a bit-at-a-time adjustment of the binary
* result in the hard case, we use floating-point
* arithmetic to determine the adjustment to within
* one bit; only in really hard cases do we need to
* compute a second residual.
* 4. Because of 3., we don't need a large table of powers of 10
* for ten-to-e (just some small tables, e.g. of 10^k
* for 0 <= k <= 22).
*/
/*
* #define IEEE_8087 for IEEE-arithmetic machines where the least
* significant byte has the lowest address.
* #define IEEE_MC68k for IEEE-arithmetic machines where the most
* significant byte has the lowest address.
* #define Long int on machines with 32-bit ints and 64-bit longs.
* #define IBM for IBM mainframe-style floating-point arithmetic.
* #define VAX for VAX-style floating-point arithmetic (D_floating).
* #define No_leftright to omit left-right logic in fast floating-point
* computation of dtoa. This will cause dtoa modes 4 and 5 to be
* treated the same as modes 2 and 3 for some inputs.
* #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
* and strtod and dtoa should round accordingly. Unless Trust_FLT_ROUNDS
* is also #defined, fegetround() will be queried for the rounding mode.
* Note that both FLT_ROUNDS and fegetround() are specified by the C99
* standard (and are specified to be consistent, with fesetround()
* affecting the value of FLT_ROUNDS), but that some (Linux) systems
* do not work correctly in this regard, so using fegetround() is more
* portable than using FLT_ROUNDS directly.
* #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3
* and Honor_FLT_ROUNDS is not #defined.
* #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
* that use extended-precision instructions to compute rounded
* products and quotients) with IBM.
* #define ROUND_BIASED for IEEE-format with biased rounding and arithmetic
* that rounds toward +Infinity.
* #define ROUND_BIASED_without_Round_Up for IEEE-format with biased
* rounding when the underlying floating-point arithmetic uses
* unbiased rounding. This prevent using ordinary floating-point
* arithmetic when the result could be computed with one rounding error.
* #define Inaccurate_Divide for IEEE-format with correctly rounded
* products but inaccurate quotients, e.g., for Intel i860.
* #define NO_LONG_LONG on machines that do not have a "long long"
* integer type (of >= 64 bits). On such machines, you can
* #define Just_16 to store 16 bits per 32-bit Long when doing
* high-precision integer arithmetic. Whether this speeds things
* up or slows things down depends on the machine and the number
* being converted. If long long is available and the name is
* something other than "long long", #define Llong to be the name,
* and if "unsigned Llong" does not work as an unsigned version of
* Llong, #define #ULLong to be the corresponding unsigned type.
* #define KR_headers for old-style C function headers.
* #define Bad_float_h if your system lacks a float.h or if it does not
* define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
* FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
* #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n)
* if memory is available and otherwise does something you deem
* appropriate. If MALLOC is undefined, malloc will be invoked
* directly -- and assumed always to succeed. Similarly, if you
* want something other than the system's free() to be called to
* recycle memory acquired from MALLOC, #define FREE to be the
* name of the alternate routine. (FREE or free is only called in
* pathological cases, e.g., in a dtoa call after a dtoa return in
* mode 3 with thousands of digits requested.)
* #define Omit_Private_Memory to omit logic (added Jan. 1998) for making
* memory allocations from a private pool of memory when possible.
* When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes,
* unless #defined to be a different length. This default length
* suffices to get rid of MALLOC calls except for unusual cases,
* such as decimal-to-binary conversion of a very long string of
* digits. The longest string dtoa can return is about 751 bytes
* long. For conversions by strtod of strings of 800 digits and
* all dtoa conversions in single-threaded executions with 8-byte
* pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte
* pointers, PRIVATE_MEM >= 7112 appears adequate.
* #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK
* #defined automatically on IEEE systems. On such systems,
* when INFNAN_CHECK is #defined, strtod checks
* for Infinity and NaN (case insensitively). On some systems
* (e.g., some HP systems), it may be necessary to #define NAN_WORD0
* appropriately -- to the most significant word of a quiet NaN.
* (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.)
* When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined,
* strtod also accepts (case insensitively) strings of the form
* NaN(x), where x is a string of hexadecimal digits and spaces;
* if there is only one string of hexadecimal digits, it is taken
* for the 52 fraction bits of the resulting NaN; if there are two
* or more strings of hex digits, the first is for the high 20 bits,
* the second and subsequent for the low 32 bits, with intervening
* white space ignored; but if this results in none of the 52
* fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0
* and NAN_WORD1 are used instead.
* #define MULTIPLE_THREADS if the system offers preemptively scheduled
* multiple threads. In this case, you must provide (or suitably
* #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed
* by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed
* in pow5mult, ensures lazy evaluation of only one copy of high
* powers of 5; omitting this lock would introduce a small
* probability of wasting memory, but would otherwise be harmless.)
* You must also invoke freedtoa(s) to free the value s returned by
* dtoa. You may do so whether or not MULTIPLE_THREADS is #defined.
* #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that
* avoids underflows on inputs whose result does not underflow.
* If you #define NO_IEEE_Scale on a machine that uses IEEE-format
* floating-point numbers and flushes underflows to zero rather
* than implementing gradual underflow, then you must also #define
* Sudden_Underflow.
* #define USE_LOCALE to use the current locale's decimal_point value.
* #define SET_INEXACT if IEEE arithmetic is being used and extra
* computation should be done to set the inexact flag when the
* result is inexact and avoid setting inexact when the result
* is exact. In this case, dtoa.c must be compiled in
* an environment, perhaps provided by #include "dtoa.c" in a
* suitable wrapper, that defines two functions,
* int get_inexact(void);
* void clear_inexact(void);
* such that get_inexact() returns a nonzero value if the
* inexact bit is already set, and clear_inexact() sets the
* inexact bit to 0. When SET_INEXACT is #defined, strtod
* also does extra computations to set the underflow and overflow
* flags when appropriate (i.e., when the result is tiny and
* inexact or when it is a numeric value rounded to +-infinity).
* #define NO_ERRNO if strtod should not assign errno = ERANGE when
* the result overflows to +-Infinity or underflows to 0.
* #define NO_HEX_FP to omit recognition of hexadecimal floating-point
* values by strtod.
* #define NO_STRTOD_BIGCOMP (on IEEE-arithmetic systems only for now)
* to disable logic for "fast" testing of very long input strings
* to strtod. This testing proceeds by initially truncating the
* input string, then if necessary comparing the whole string with
* a decimal expansion to decide close cases. This logic is only
* used for input more than STRTOD_DIGLIM digits long (default 40).
*/
#if 0
#include "dtoa_config.h"
#ifndef Long
#define Long long
#endif
#ifndef ULong
typedef unsigned Long ULong;
#endif
#ifdef DEBUG
#include "stdio.h"
#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
#endif
#include "stdlib.h"
#include "string.h"
#ifdef USE_LOCALE
#include "locale.h"
#endif
#ifdef Honor_FLT_ROUNDS
#ifndef Trust_FLT_ROUNDS
#include <fenv.h>
#endif
#endif
#ifdef MALLOC
#ifdef KR_headers
extern char *MALLOC();
#else
extern void *MALLOC(size_t);
#endif
#else
#define MALLOC malloc
#endif
#ifndef Omit_Private_Memory
#ifndef PRIVATE_MEM
#define PRIVATE_MEM 2304
#endif
#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double))
static double private_mem[PRIVATE_mem], *pmem_next = private_mem;
#endif
#undef IEEE_Arith
#undef Avoid_Underflow
#ifdef IEEE_MC68k
#define IEEE_Arith
#endif
#ifdef IEEE_8087
#define IEEE_Arith
#endif
#ifdef IEEE_Arith
#ifndef NO_INFNAN_CHECK
#undef INFNAN_CHECK
#define INFNAN_CHECK
#endif
#else
#undef INFNAN_CHECK
#define NO_STRTOD_BIGCOMP
#endif
#include "errno.h"
#ifdef Bad_float_h
#ifdef IEEE_Arith
#define DBL_DIG 15
#define DBL_MAX_10_EXP 308
#define DBL_MAX_EXP 1024
#define FLT_RADIX 2
#endif /*IEEE_Arith*/
#ifdef IBM
#define DBL_DIG 16
#define DBL_MAX_10_EXP 75
#define DBL_MAX_EXP 63
#define FLT_RADIX 16
#define DBL_MAX 7.2370055773322621e+75
#endif
#ifdef VAX
#define DBL_DIG 16
#define DBL_MAX_10_EXP 38
#define DBL_MAX_EXP 127
#define FLT_RADIX 2
#define DBL_MAX 1.7014118346046923e+38
#endif
#ifndef LONG_MAX
#define LONG_MAX 2147483647
#endif
#else /* ifndef Bad_float_h */
#include "float.h"
#endif /* Bad_float_h */
#ifndef __MATH_H__
#include "math.h"
#endif
#ifdef __cplusplus
extern "C" {
#endif
#ifndef CONST
#ifdef KR_headers
#define CONST /* blank */
#else
#define CONST const
#endif
#endif
#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1
Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined.
#endif
typedef union { double d; ULong L[2]; } U;
#ifdef IEEE_8087
#define word0(x) (x)->L[1]
#define word1(x) (x)->L[0]
#else
#define word0(x) (x)->L[0]
#define word1(x) (x)->L[1]
#endif
#define dval(x) (x)->d
#ifndef STRTOD_DIGLIM
#define STRTOD_DIGLIM 40
#endif
#ifdef DIGLIM_DEBUG
extern int strtod_diglim;
#else
#define strtod_diglim STRTOD_DIGLIM
#endif
/* The following definition of Storeinc is appropriate for MIPS processors.
* An alternative that might be better on some machines is
* #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
*/
#if defined(IEEE_8087) + defined(VAX)
#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
((unsigned short *)a)[0] = (unsigned short)c, a++)
#else
#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
((unsigned short *)a)[1] = (unsigned short)c, a++)
#endif
/* #define P DBL_MANT_DIG */
/* Ten_pmax = floor(P*log(2)/log(5)) */
/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
#ifdef IEEE_Arith
#define Exp_shift 20
#define Exp_shift1 20
#define Exp_msk1 0x100000
#define Exp_msk11 0x100000
#define Exp_mask 0x7ff00000
#define P 53
#define Nbits 53
#define Bias 1023
#define Emax 1023
#define Emin (-1022)
#define Exp_1 0x3ff00000
#define Exp_11 0x3ff00000
#define Ebits 11
#define Frac_mask 0xfffff
#define Frac_mask1 0xfffff
#define Ten_pmax 22
#define Bletch 0x10
#define Bndry_mask 0xfffff
#define Bndry_mask1 0xfffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 1
#define Tiny0 0
#define Tiny1 1
#define Quick_max 14
#define Int_max 14
#ifndef NO_IEEE_Scale
#define Avoid_Underflow
#ifdef Flush_Denorm /* debugging option */
#undef Sudden_Underflow
#endif
#endif
#ifndef Flt_Rounds
#ifdef FLT_ROUNDS
#define Flt_Rounds FLT_ROUNDS
#else
#define Flt_Rounds 1
#endif
#endif /*Flt_Rounds*/
#ifdef Honor_FLT_ROUNDS
#undef Check_FLT_ROUNDS
#define Check_FLT_ROUNDS
#else
#define Rounding Flt_Rounds
#endif
#else /* ifndef IEEE_Arith */
#undef Check_FLT_ROUNDS
#undef Honor_FLT_ROUNDS
#undef SET_INEXACT
#undef Sudden_Underflow
#define Sudden_Underflow
#ifdef IBM
#undef Flt_Rounds
#define Flt_Rounds 0
#define Exp_shift 24
#define Exp_shift1 24
#define Exp_msk1 0x1000000
#define Exp_msk11 0x1000000
#define Exp_mask 0x7f000000
#define P 14
#define Nbits 56
#define Bias 65
#define Emax 248
#define Emin (-260)
#define Exp_1 0x41000000
#define Exp_11 0x41000000
#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */
#define Frac_mask 0xffffff
#define Frac_mask1 0xffffff
#define Bletch 4
#define Ten_pmax 22
#define Bndry_mask 0xefffff
#define Bndry_mask1 0xffffff
#define LSB 1
#define Sign_bit 0x80000000
#define Log2P 4
#define Tiny0 0x100000
#define Tiny1 0
#define Quick_max 14
#define Int_max 15
#else /* VAX */
#undef Flt_Rounds
#define Flt_Rounds 1
#define Exp_shift 23
#define Exp_shift1 7
#define Exp_msk1 0x80
#define Exp_msk11 0x800000
#define Exp_mask 0x7f80
#define P 56
#define Nbits 56
#define Bias 129
#define Emax 126
#define Emin (-129)
#define Exp_1 0x40800000
#define Exp_11 0x4080
#define Ebits 8
#define Frac_mask 0x7fffff
#define Frac_mask1 0xffff007f
#define Ten_pmax 24
#define Bletch 2
#define Bndry_mask 0xffff007f
#define Bndry_mask1 0xffff007f
#define LSB 0x10000
#define Sign_bit 0x8000
#define Log2P 1
#define Tiny0 0x80
#define Tiny1 0
#define Quick_max 15
#define Int_max 15
#endif /* IBM, VAX */
#endif /* IEEE_Arith */
#ifndef IEEE_Arith
#define ROUND_BIASED
#else
#ifdef ROUND_BIASED_without_Round_Up
#undef ROUND_BIASED
#define ROUND_BIASED
#endif
#endif
#ifdef RND_PRODQUOT
#define rounded_product(a,b) a = rnd_prod(a, b)
#define rounded_quotient(a,b) a = rnd_quot(a, b)
#ifdef KR_headers
extern double rnd_prod(), rnd_quot();
#else
extern double rnd_prod(double, double), rnd_quot(double, double);
#endif
#else
#define rounded_product(a,b) a *= b
#define rounded_quotient(a,b) a /= b
#endif
#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
#define Big1 0xffffffff
#ifndef Pack_32
#define Pack_32
#endif
typedef struct BCinfo BCinfo;
struct
BCinfo { int dp0, dp1, dplen, dsign, e0, inexact, nd, nd0, rounding, scale, uflchk; };
#ifdef KR_headers
#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff)
#else
#define FFFFFFFF 0xffffffffUL
#endif
#ifdef NO_LONG_LONG
#undef ULLong
#ifdef Just_16
#undef Pack_32
/* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
* This makes some inner loops simpler and sometimes saves work
* during multiplications, but it often seems to make things slightly
* slower. Hence the default is now to store 32 bits per Long.
*/
#endif
#else /* long long available */
#ifndef Llong
#define Llong long long
#endif
#ifndef ULLong
#define ULLong unsigned Llong
#endif
#endif /* NO_LONG_LONG */
#ifndef MULTIPLE_THREADS
#define ACQUIRE_DTOA_LOCK(n) /*nothing*/
#define FREE_DTOA_LOCK(n) /*nothing*/
#endif
#define Kmax 7
#ifdef __cplusplus
extern "C" double fpconv_strtod(const char *s00, char **se);
extern "C" char *dtoa(double d, int mode, int ndigits,
int *decpt, int *sign, char **rve);
#endif
struct
Bigint {
struct Bigint *next;
int k, maxwds, sign, wds;
ULong x[1];
};
typedef struct Bigint Bigint;
static Bigint *freelist[Kmax+1];
static Bigint *
Balloc
#ifdef KR_headers
(k) int k;
#else
(int k)
#endif
{
int x;
Bigint *rv;
#ifndef Omit_Private_Memory
unsigned int len;
#endif
ACQUIRE_DTOA_LOCK(0);
/* The k > Kmax case does not need ACQUIRE_DTOA_LOCK(0), */
/* but this case seems very unlikely. */
if (k <= Kmax && (rv = freelist[k]))
freelist[k] = rv->next;
else {
x = 1 << k;
#ifdef Omit_Private_Memory
rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong));
#else
len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1)
/sizeof(double);
if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) {
rv = (Bigint*)pmem_next;
pmem_next += len;
}
else
rv = (Bigint*)MALLOC(len*sizeof(double));
#endif
rv->k = k;
rv->maxwds = x;
}
FREE_DTOA_LOCK(0);
rv->sign = rv->wds = 0;
return rv;
}
static void
Bfree
#ifdef KR_headers
(v) Bigint *v;
#else
(Bigint *v)
#endif
{
if (v) {
if (v->k > Kmax)
#ifdef FREE
FREE((void*)v);
#else
free((void*)v);
#endif
else {
ACQUIRE_DTOA_LOCK(0);
v->next = freelist[v->k];
freelist[v->k] = v;
FREE_DTOA_LOCK(0);
}
}
}
#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
y->wds*sizeof(Long) + 2*sizeof(int))
static Bigint *
multadd
#ifdef KR_headers
(b, m, a) Bigint *b; int m, a;
#else
(Bigint *b, int m, int a) /* multiply by m and add a */
#endif
{
int i, wds;
#ifdef ULLong
ULong *x;
ULLong carry, y;
#else
ULong carry, *x, y;
#ifdef Pack_32
ULong xi, z;
#endif
#endif
Bigint *b1;
wds = b->wds;
x = b->x;
i = 0;
carry = a;
do {
#ifdef ULLong
y = *x * (ULLong)m + carry;
carry = y >> 32;
*x++ = y & FFFFFFFF;
#else
#ifdef Pack_32
xi = *x;
y = (xi & 0xffff) * m + carry;
z = (xi >> 16) * m + (y >> 16);
carry = z >> 16;
*x++ = (z << 16) + (y & 0xffff);
#else
y = *x * m + carry;
carry = y >> 16;
*x++ = y & 0xffff;
#endif
#endif
}
while(++i < wds);
if (carry) {
if (wds >= b->maxwds) {
b1 = Balloc(b->k+1);
Bcopy(b1, b);
Bfree(b);
b = b1;
}
b->x[wds++] = carry;
b->wds = wds;
}
return b;
}
static Bigint *
s2b
#ifdef KR_headers
(s, nd0, nd, y9, dplen) CONST char *s; int nd0, nd, dplen; ULong y9;
#else
(const char *s, int nd0, int nd, ULong y9, int dplen)
#endif
{
Bigint *b;
int i, k;
Long x, y;
x = (nd + 8) / 9;
for(k = 0, y = 1; x > y; y <<= 1, k++) ;
#ifdef Pack_32
b = Balloc(k);
b->x[0] = y9;
b->wds = 1;
#else
b = Balloc(k+1);
b->x[0] = y9 & 0xffff;
b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
#endif
i = 9;
if (9 < nd0) {
s += 9;
do b = multadd(b, 10, *s++ - '0');
while(++i < nd0);
s += dplen;
}
else
s += dplen + 9;
for(; i < nd; i++)
b = multadd(b, 10, *s++ - '0');
return b;
}
static int
hi0bits
#ifdef KR_headers
(x) ULong x;
#else
(ULong x)
#endif
{
int k = 0;
if (!(x & 0xffff0000)) {
k = 16;
x <<= 16;
}
if (!(x & 0xff000000)) {
k += 8;
x <<= 8;
}
if (!(x & 0xf0000000)) {
k += 4;
x <<= 4;
}
if (!(x & 0xc0000000)) {
k += 2;
x <<= 2;
}
if (!(x & 0x80000000)) {
k++;
if (!(x & 0x40000000))
return 32;
}
return k;
}
static int
lo0bits
#ifdef KR_headers
(y) ULong *y;
#else
(ULong *y)
#endif
{
int k;
ULong x = *y;
if (x & 7) {
if (x & 1)
return 0;
if (x & 2) {
*y = x >> 1;
return 1;
}
*y = x >> 2;
return 2;
}
k = 0;
if (!(x & 0xffff)) {
k = 16;
x >>= 16;
}
if (!(x & 0xff)) {
k += 8;
x >>= 8;
}
if (!(x & 0xf)) {
k += 4;
x >>= 4;
}
if (!(x & 0x3)) {
k += 2;
x >>= 2;
}
if (!(x & 1)) {
k++;
x >>= 1;
if (!x)
return 32;
}
*y = x;
return k;
}
static Bigint *
i2b
#ifdef KR_headers
(i) int i;
#else
(int i)
#endif
{
Bigint *b;
b = Balloc(1);
b->x[0] = i;
b->wds = 1;
return b;
}
static Bigint *
mult
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
Bigint *c;
int k, wa, wb, wc;
ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
ULong y;
#ifdef ULLong
ULLong carry, z;
#else
ULong carry, z;
#ifdef Pack_32
ULong z2;
#endif
#endif
if (a->wds < b->wds) {
c = a;
a = b;
b = c;
}
k = a->k;
wa = a->wds;
wb = b->wds;
wc = wa + wb;
if (wc > a->maxwds)
k++;
c = Balloc(k);
for(x = c->x, xa = x + wc; x < xa; x++)
*x = 0;
xa = a->x;
xae = xa + wa;
xb = b->x;
xbe = xb + wb;
xc0 = c->x;
#ifdef ULLong
for(; xb < xbe; xc0++) {
if ((y = *xb++)) {
x = xa;
xc = xc0;
carry = 0;
do {
z = *x++ * (ULLong)y + *xc + carry;
carry = z >> 32;
*xc++ = z & FFFFFFFF;
}
while(x < xae);
*xc = carry;
}
}
#else
#ifdef Pack_32
for(; xb < xbe; xb++, xc0++) {
if (y = *xb & 0xffff) {
x = xa;
xc = xc0;
carry = 0;
do {
z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
carry = z >> 16;
z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
carry = z2 >> 16;
Storeinc(xc, z2, z);
}
while(x < xae);
*xc = carry;
}
if (y = *xb >> 16) {
x = xa;
xc = xc0;
carry = 0;
z2 = *xc;
do {
z = (*x & 0xffff) * y + (*xc >> 16) + carry;
carry = z >> 16;
Storeinc(xc, z, z2);
z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
carry = z2 >> 16;
}
while(x < xae);
*xc = z2;
}
}
#else
for(; xb < xbe; xc0++) {
if (y = *xb++) {
x = xa;
xc = xc0;
carry = 0;
do {
z = *x++ * y + *xc + carry;
carry = z >> 16;
*xc++ = z & 0xffff;
}
while(x < xae);
*xc = carry;
}
}
#endif
#endif
for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
c->wds = wc;
return c;
}
static Bigint *p5s;
static Bigint *
pow5mult
#ifdef KR_headers
(b, k) Bigint *b; int k;
#else
(Bigint *b, int k)
#endif
{
Bigint *b1, *p5, *p51;
int i;
static int p05[3] = { 5, 25, 125 };
if ((i = k & 3))
b = multadd(b, p05[i-1], 0);
if (!(k >>= 2))
return b;
if (!(p5 = p5s)) {
/* first time */
#ifdef MULTIPLE_THREADS
ACQUIRE_DTOA_LOCK(1);
if (!(p5 = p5s)) {
p5 = p5s = i2b(625);
p5->next = 0;
}
FREE_DTOA_LOCK(1);
#else
p5 = p5s = i2b(625);
p5->next = 0;
#endif
}
for(;;) {
if (k & 1) {
b1 = mult(b, p5);
Bfree(b);
b = b1;
}
if (!(k >>= 1))
break;
if (!(p51 = p5->next)) {
#ifdef MULTIPLE_THREADS
ACQUIRE_DTOA_LOCK(1);
if (!(p51 = p5->next)) {
p51 = p5->next = mult(p5,p5);
p51->next = 0;
}
FREE_DTOA_LOCK(1);
#else
p51 = p5->next = mult(p5,p5);
p51->next = 0;
#endif
}
p5 = p51;
}
return b;
}
static Bigint *
lshift
#ifdef KR_headers
(b, k) Bigint *b; int k;
#else
(Bigint *b, int k)
#endif
{
int i, k1, n, n1;
Bigint *b1;
ULong *x, *x1, *xe, z;
#ifdef Pack_32
n = k >> 5;
#else
n = k >> 4;
#endif
k1 = b->k;
n1 = n + b->wds + 1;
for(i = b->maxwds; n1 > i; i <<= 1)
k1++;
b1 = Balloc(k1);
x1 = b1->x;
for(i = 0; i < n; i++)
*x1++ = 0;
x = b->x;
xe = x + b->wds;
#ifdef Pack_32
if (k &= 0x1f) {
k1 = 32 - k;
z = 0;
do {
*x1++ = *x << k | z;
z = *x++ >> k1;
}
while(x < xe);
if ((*x1 = z))
++n1;
}
#else
if (k &= 0xf) {
k1 = 16 - k;
z = 0;
do {
*x1++ = *x << k & 0xffff | z;
z = *x++ >> k1;
}
while(x < xe);
if (*x1 = z)
++n1;
}
#endif
else do
*x1++ = *x++;
while(x < xe);
b1->wds = n1 - 1;
Bfree(b);
return b1;
}
static int
cmp
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
ULong *xa, *xa0, *xb, *xb0;
int i, j;
i = a->wds;
j = b->wds;
#ifdef DEBUG
if (i > 1 && !a->x[i-1])
Bug("cmp called with a->x[a->wds-1] == 0");
if (j > 1 && !b->x[j-1])
Bug("cmp called with b->x[b->wds-1] == 0");
#endif
if (i -= j)
return i;
xa0 = a->x;
xa = xa0 + j;
xb0 = b->x;
xb = xb0 + j;
for(;;) {
if (*--xa != *--xb)
return *xa < *xb ? -1 : 1;
if (xa <= xa0)
break;
}
return 0;
}
static Bigint *
diff
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
Bigint *c;
int i, wa, wb;
ULong *xa, *xae, *xb, *xbe, *xc;
#ifdef ULLong
ULLong borrow, y;
#else
ULong borrow, y;
#ifdef Pack_32
ULong z;
#endif
#endif
i = cmp(a,b);
if (!i) {
c = Balloc(0);
c->wds = 1;
c->x[0] = 0;
return c;
}
if (i < 0) {
c = a;
a = b;
b = c;
i = 1;
}
else
i = 0;
c = Balloc(a->k);
c->sign = i;
wa = a->wds;
xa = a->x;
xae = xa + wa;
wb = b->wds;
xb = b->x;
xbe = xb + wb;
xc = c->x;
borrow = 0;
#ifdef ULLong
do {
y = (ULLong)*xa++ - *xb++ - borrow;
borrow = y >> 32 & (ULong)1;
*xc++ = y & FFFFFFFF;
}
while(xb < xbe);
while(xa < xae) {
y = *xa++ - borrow;
borrow = y >> 32 & (ULong)1;
*xc++ = y & FFFFFFFF;
}
#else
#ifdef Pack_32
do {
y = (*xa & 0xffff) - (*xb & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*xa++ >> 16) - (*xb++ >> 16) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(xc, z, y);
}
while(xb < xbe);
while(xa < xae) {
y = (*xa & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*xa++ >> 16) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(xc, z, y);
}
#else
do {
y = *xa++ - *xb++ - borrow;
borrow = (y & 0x10000) >> 16;
*xc++ = y & 0xffff;
}
while(xb < xbe);
while(xa < xae) {
y = *xa++ - borrow;
borrow = (y & 0x10000) >> 16;
*xc++ = y & 0xffff;
}
#endif
#endif
while(!*--xc)
wa--;
c->wds = wa;
return c;
}
static double
ulp
#ifdef KR_headers
(x) U *x;
#else
(U *x)
#endif
{
Long L;
U u;
L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
#ifndef Avoid_Underflow
#ifndef Sudden_Underflow
if (L > 0) {
#endif
#endif
#ifdef IBM
L |= Exp_msk1 >> 4;
#endif
word0(&u) = L;
word1(&u) = 0;
#ifndef Avoid_Underflow
#ifndef Sudden_Underflow
}
else {
L = -L >> Exp_shift;
if (L < Exp_shift) {
word0(&u) = 0x80000 >> L;
word1(&u) = 0;
}
else {
word0(&u) = 0;
L -= Exp_shift;
word1(&u) = L >= 31 ? 1 : 1 << 31 - L;
}
}
#endif
#endif
return dval(&u);
}
static double
b2d
#ifdef KR_headers
(a, e) Bigint *a; int *e;
#else
(Bigint *a, int *e)
#endif
{
ULong *xa, *xa0, w, y, z;
int k;
U d;
#ifdef VAX
ULong d0, d1;
#else
#define d0 word0(&d)
#define d1 word1(&d)
#endif
xa0 = a->x;
xa = xa0 + a->wds;
y = *--xa;
#ifdef DEBUG
if (!y) Bug("zero y in b2d");
#endif
k = hi0bits(y);
*e = 32 - k;
#ifdef Pack_32
if (k < Ebits) {
d0 = Exp_1 | y >> (Ebits - k);
w = xa > xa0 ? *--xa : 0;
d1 = y << ((32-Ebits) + k) | w >> (Ebits - k);
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
if (k -= Ebits) {
d0 = Exp_1 | y << k | z >> (32 - k);
y = xa > xa0 ? *--xa : 0;
d1 = z << k | y >> (32 - k);
}
else {
d0 = Exp_1 | y;
d1 = z;
}
#else
if (k < Ebits + 16) {
z = xa > xa0 ? *--xa : 0;
d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
w = xa > xa0 ? *--xa : 0;
y = xa > xa0 ? *--xa : 0;
d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
goto ret_d;
}
z = xa > xa0 ? *--xa : 0;
w = xa > xa0 ? *--xa : 0;
k -= Ebits + 16;
d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
y = xa > xa0 ? *--xa : 0;
d1 = w << k + 16 | y << k;
#endif
ret_d:
#ifdef VAX
word0(&d) = d0 >> 16 | d0 << 16;
word1(&d) = d1 >> 16 | d1 << 16;
#else
#undef d0
#undef d1
#endif
return dval(&d);
}
static Bigint *
d2b
#ifdef KR_headers
(d, e, bits) U *d; int *e, *bits;
#else
(U *d, int *e, int *bits)
#endif
{
Bigint *b;
int de, k;
ULong *x, y, z;
#ifndef Sudden_Underflow
int i;
#endif
#ifdef VAX
ULong d0, d1;
d0 = word0(d) >> 16 | word0(d) << 16;
d1 = word1(d) >> 16 | word1(d) << 16;
#else
#define d0 word0(d)
#define d1 word1(d)
#endif
#ifdef Pack_32
b = Balloc(1);
#else
b = Balloc(2);
#endif
x = b->x;
z = d0 & Frac_mask;
d0 &= 0x7fffffff; /* clear sign bit, which we ignore */
#ifdef Sudden_Underflow
de = (int)(d0 >> Exp_shift);
#ifndef IBM
z |= Exp_msk11;
#endif
#else
if ((de = (int)(d0 >> Exp_shift)))
z |= Exp_msk1;
#endif
#ifdef Pack_32
if ((y = d1)) {
if ((k = lo0bits(&y))) {
x[0] = y | z << (32 - k);
z >>= k;
}
else
x[0] = y;
#ifndef Sudden_Underflow
i =
#endif
b->wds = (x[1] = z) ? 2 : 1;
}
else {
k = lo0bits(&z);
x[0] = z;
#ifndef Sudden_Underflow
i =
#endif
b->wds = 1;
k += 32;
}
#else
if (y = d1) {
if (k = lo0bits(&y))
if (k >= 16) {
x[0] = y | z << 32 - k & 0xffff;
x[1] = z >> k - 16 & 0xffff;
x[2] = z >> k;
i = 2;
}
else {
x[0] = y & 0xffff;
x[1] = y >> 16 | z << 16 - k & 0xffff;
x[2] = z >> k & 0xffff;
x[3] = z >> k+16;
i = 3;
}
else {
x[0] = y & 0xffff;
x[1] = y >> 16;
x[2] = z & 0xffff;
x[3] = z >> 16;
i = 3;
}
}
else {
#ifdef DEBUG
if (!z)
Bug("Zero passed to d2b");
#endif
k = lo0bits(&z);
if (k >= 16) {
x[0] = z;
i = 0;
}
else {
x[0] = z & 0xffff;
x[1] = z >> 16;
i = 1;
}
k += 32;
}
while(!x[i])
--i;
b->wds = i + 1;
#endif
#ifndef Sudden_Underflow
if (de) {
#endif
#ifdef IBM
*e = (de - Bias - (P-1) << 2) + k;
*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
#else
*e = de - Bias - (P-1) + k;
*bits = P - k;
#endif
#ifndef Sudden_Underflow
}
else {
*e = de - Bias - (P-1) + 1 + k;
#ifdef Pack_32
*bits = 32*i - hi0bits(x[i-1]);
#else
*bits = (i+2)*16 - hi0bits(x[i]);
#endif
}
#endif
return b;
}
#undef d0
#undef d1
static double
ratio
#ifdef KR_headers
(a, b) Bigint *a, *b;
#else
(Bigint *a, Bigint *b)
#endif
{
U da, db;
int k, ka, kb;
dval(&da) = b2d(a, &ka);
dval(&db) = b2d(b, &kb);
#ifdef Pack_32
k = ka - kb + 32*(a->wds - b->wds);
#else
k = ka - kb + 16*(a->wds - b->wds);
#endif
#ifdef IBM
if (k > 0) {
word0(&da) += (k >> 2)*Exp_msk1;
if (k &= 3)
dval(&da) *= 1 << k;
}
else {
k = -k;
word0(&db) += (k >> 2)*Exp_msk1;
if (k &= 3)
dval(&db) *= 1 << k;
}
#else
if (k > 0)
word0(&da) += k*Exp_msk1;
else {
k = -k;
word0(&db) += k*Exp_msk1;
}
#endif
return dval(&da) / dval(&db);
}
static CONST double
tens[] = {
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22
#ifdef VAX
, 1e23, 1e24
#endif
};
static CONST double
#ifdef IEEE_Arith
bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128,
#ifdef Avoid_Underflow
9007199254740992.*9007199254740992.e-256
/* = 2^106 * 1e-256 */
#else
1e-256
#endif
};
/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */
/* flag unnecessarily. It leads to a song and dance at the end of strtod. */
#define Scale_Bit 0x10
#define n_bigtens 5
#else
#ifdef IBM
bigtens[] = { 1e16, 1e32, 1e64 };
static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 };
#define n_bigtens 3
#else
bigtens[] = { 1e16, 1e32 };
static CONST double tinytens[] = { 1e-16, 1e-32 };
#define n_bigtens 2
#endif
#endif
#undef Need_Hexdig
#ifdef INFNAN_CHECK
#ifndef No_Hex_NaN
#define Need_Hexdig
#endif
#endif
#ifndef Need_Hexdig
#ifndef NO_HEX_FP
#define Need_Hexdig
#endif
#endif
#ifdef Need_Hexdig /*{*/
static unsigned char hexdig[256];
static void
#ifdef KR_headers
htinit(h, s, inc) unsigned char *h; unsigned char *s; int inc;
#else
htinit(unsigned char *h, unsigned char *s, int inc)
#endif
{
int i, j;
for(i = 0; (j = s[i]) !=0; i++)
h[j] = i + inc;
}
static void
#ifdef KR_headers
hexdig_init()
#else
hexdig_init(void)
#endif
{
#define USC (unsigned char *)
htinit(hexdig, USC "0123456789", 0x10);
htinit(hexdig, USC "abcdef", 0x10 + 10);
htinit(hexdig, USC "ABCDEF", 0x10 + 10);
}
#endif /* } Need_Hexdig */
#ifdef INFNAN_CHECK
#ifndef NAN_WORD0
#define NAN_WORD0 0x7ff80000
#endif
#ifndef NAN_WORD1
#define NAN_WORD1 0
#endif
static int
match
#ifdef KR_headers
(sp, t) char **sp, *t;
#else
(const char **sp, const char *t)
#endif
{
int c, d;
CONST char *s = *sp;
while((d = *t++)) {
if ((c = *++s) >= 'A' && c <= 'Z')
c += 'a' - 'A';
if (c != d)
return 0;
}
*sp = s + 1;
return 1;
}
#ifndef No_Hex_NaN
static void
hexnan
#ifdef KR_headers
(rvp, sp) U *rvp; CONST char **sp;
#else
(U *rvp, const char **sp)
#endif
{
ULong c, x[2];
CONST char *s;
int c1, havedig, udx0, xshift;
if (!hexdig['0'])
hexdig_init();
x[0] = x[1] = 0;
havedig = xshift = 0;
udx0 = 1;
s = *sp;
/* allow optional initial 0x or 0X */
while((c = *(CONST unsigned char*)(s+1)) && c <= ' ')
++s;
if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X'))
s += 2;
while((c = *(CONST unsigned char*)++s)) {
if ((c1 = hexdig[c]))
c = c1 & 0xf;
else if (c <= ' ') {
if (udx0 && havedig) {
udx0 = 0;
xshift = 1;
}
continue;
}
#ifdef GDTOA_NON_PEDANTIC_NANCHECK
else if (/*(*/ c == ')' && havedig) {
*sp = s + 1;
break;
}
else
return; /* invalid form: don't change *sp */
#else
else {
do {
if (/*(*/ c == ')') {
*sp = s + 1;
break;
}
} while((c = *++s));
break;
}
#endif
havedig = 1;
if (xshift) {
xshift = 0;
x[0] = x[1];
x[1] = 0;
}
if (udx0)
x[0] = (x[0] << 4) | (x[1] >> 28);
x[1] = (x[1] << 4) | c;
}
if ((x[0] &= 0xfffff) || x[1]) {
word0(rvp) = Exp_mask | x[0];
word1(rvp) = x[1];
}
}
#endif /*No_Hex_NaN*/
#endif /* INFNAN_CHECK */
#ifdef Pack_32
#define ULbits 32
#define kshift 5
#define kmask 31
#else
#define ULbits 16
#define kshift 4
#define kmask 15
#endif
#if !defined(NO_HEX_FP) || defined(Honor_FLT_ROUNDS) /*{*/
static Bigint *
#ifdef KR_headers
increment(b) Bigint *b;
#else
increment(Bigint *b)
#endif
{
ULong *x, *xe;
Bigint *b1;
x = b->x;
xe = x + b->wds;
do {
if (*x < (ULong)0xffffffffL) {
++*x;
return b;
}
*x++ = 0;
} while(x < xe);
{
if (b->wds >= b->maxwds) {
b1 = Balloc(b->k+1);
Bcopy(b1,b);
Bfree(b);
b = b1;
}
b->x[b->wds++] = 1;
}
return b;
}
#endif /*}*/
#ifndef NO_HEX_FP /*{*/
static void
#ifdef KR_headers
rshift(b, k) Bigint *b; int k;
#else
rshift(Bigint *b, int k)
#endif
{
ULong *x, *x1, *xe, y;
int n;
x = x1 = b->x;
n = k >> kshift;
if (n < b->wds) {
xe = x + b->wds;
x += n;
if (k &= kmask) {
n = 32 - k;
y = *x++ >> k;
while(x < xe) {
*x1++ = (y | (*x << n)) & 0xffffffff;
y = *x++ >> k;
}
if ((*x1 = y) !=0)
x1++;
}
else
while(x < xe)
*x1++ = *x++;
}
if ((b->wds = x1 - b->x) == 0)
b->x[0] = 0;
}
static ULong
#ifdef KR_headers
any_on(b, k) Bigint *b; int k;
#else
any_on(Bigint *b, int k)
#endif
{
int n, nwds;
ULong *x, *x0, x1, x2;
x = b->x;
nwds = b->wds;
n = k >> kshift;
if (n > nwds)
n = nwds;
else if (n < nwds && (k &= kmask)) {
x1 = x2 = x[n];
x1 >>= k;
x1 <<= k;
if (x1 != x2)
return 1;
}
x0 = x;
x += n;
while(x > x0)
if (*--x)
return 1;
return 0;
}
enum { /* rounding values: same as FLT_ROUNDS */
Round_zero = 0,
Round_near = 1,
Round_up = 2,
Round_down = 3
};
void
#ifdef KR_headers
gethex(sp, rvp, rounding, sign)
CONST char **sp; U *rvp; int rounding, sign;
#else
gethex( CONST char **sp, U *rvp, int rounding, int sign)
#endif
{
Bigint *b;
CONST unsigned char *decpt, *s0, *s, *s1;
Long e, e1;
ULong L, lostbits, *x;
int big, denorm, esign, havedig, k, n, nbits, up, zret;
#ifdef IBM
int j;
#endif
enum {
#ifdef IEEE_Arith /*{{*/
emax = 0x7fe - Bias - P + 1,
emin = Emin - P + 1
#else /*}{*/
emin = Emin - P,
#ifdef VAX
emax = 0x7ff - Bias - P + 1
#endif
#ifdef IBM
emax = 0x7f - Bias - P
#endif
#endif /*}}*/
};
#ifdef USE_LOCALE
int i;
#ifdef NO_LOCALE_CACHE
const unsigned char *decimalpoint = (unsigned char*)
localeconv()->decimal_point;
#else
const unsigned char *decimalpoint;
static unsigned char *decimalpoint_cache;
if (!(s0 = decimalpoint_cache)) {
s0 = (unsigned char*)localeconv()->decimal_point;
if ((decimalpoint_cache = (unsigned char*)
MALLOC(strlen((CONST char*)s0) + 1))) {
strcpy((char*)decimalpoint_cache, (CONST char*)s0);
s0 = decimalpoint_cache;
}
}
decimalpoint = s0;
#endif
#endif
if (!hexdig['0'])
hexdig_init();
havedig = 0;
s0 = *(CONST unsigned char **)sp + 2;
while(s0[havedig] == '0')
havedig++;
s0 += havedig;
s = s0;
decpt = 0;
zret = 0;
e = 0;
if (hexdig[*s])
havedig++;
else {
zret = 1;
#ifdef USE_LOCALE
for(i = 0; decimalpoint[i]; ++i) {
if (s[i] != decimalpoint[i])
goto pcheck;
}
decpt = s += i;
#else
if (*s != '.')
goto pcheck;
decpt = ++s;
#endif
if (!hexdig[*s])
goto pcheck;
while(*s == '0')
s++;
if (hexdig[*s])
zret = 0;
havedig = 1;
s0 = s;
}
while(hexdig[*s])
s++;
#ifdef USE_LOCALE
if (*s == *decimalpoint && !decpt) {
for(i = 1; decimalpoint[i]; ++i) {
if (s[i] != decimalpoint[i])
goto pcheck;
}
decpt = s += i;
#else
if (*s == '.' && !decpt) {
decpt = ++s;
#endif
while(hexdig[*s])
s++;
}/*}*/
if (decpt)
e = -(((Long)(s-decpt)) << 2);
pcheck:
s1 = s;
big = esign = 0;
switch(*s) {
case 'p':
case 'P':
switch(*++s) {
case '-':
esign = 1;
/* no break */
case '+':
s++;
}
if ((n = hexdig[*s]) == 0 || n > 0x19) {
s = s1;
break;
}
e1 = n - 0x10;
while((n = hexdig[*++s]) !=0 && n <= 0x19) {
if (e1 & 0xf8000000)
big = 1;
e1 = 10*e1 + n - 0x10;
}
if (esign)
e1 = -e1;
e += e1;
}
*sp = (char*)s;
if (!havedig)
*sp = (char*)s0 - 1;
if (zret)
goto retz1;
if (big) {
if (esign) {
#ifdef IEEE_Arith
switch(rounding) {
case Round_up:
if (sign)
break;
goto ret_tiny;
case Round_down:
if (!sign)
break;
goto ret_tiny;
}
#endif
goto retz;
#ifdef IEEE_Arith
ret_tiny:
#ifndef NO_ERRNO
errno = ERANGE;
#endif
word0(rvp) = 0;
word1(rvp) = 1;
return;
#endif /* IEEE_Arith */
}
switch(rounding) {
case Round_near:
goto ovfl1;
case Round_up:
if (!sign)
goto ovfl1;
goto ret_big;
case Round_down:
if (sign)
goto ovfl1;
goto ret_big;
}
ret_big:
word0(rvp) = Big0;
word1(rvp) = Big1;
return;
}
n = s1 - s0 - 1;
for(k = 0; n > (1 << (kshift-2)) - 1; n >>= 1)
k++;
b = Balloc(k);
x = b->x;
n = 0;
L = 0;
#ifdef USE_LOCALE
for(i = 0; decimalpoint[i+1]; ++i);
#endif
while(s1 > s0) {
#ifdef USE_LOCALE
if (*--s1 == decimalpoint[i]) {
s1 -= i;
continue;
}
#else
if (*--s1 == '.')
continue;
#endif
if (n == ULbits) {
*x++ = L;
L = 0;
n = 0;
}
L |= (hexdig[*s1] & 0x0f) << n;
n += 4;
}
*x++ = L;
b->wds = n = x - b->x;
n = ULbits*n - hi0bits(L);
nbits = Nbits;
lostbits = 0;
x = b->x;
if (n > nbits) {
n -= nbits;
if (any_on(b,n)) {
lostbits = 1;
k = n - 1;
if (x[k>>kshift] & 1 << (k & kmask)) {
lostbits = 2;
if (k > 0 && any_on(b,k))
lostbits = 3;
}
}
rshift(b, n);
e += n;
}
else if (n < nbits) {
n = nbits - n;
b = lshift(b, n);
e -= n;
x = b->x;
}
if (e > Emax) {
ovfl:
Bfree(b);
ovfl1:
#ifndef NO_ERRNO
errno = ERANGE;
#endif
word0(rvp) = Exp_mask;
word1(rvp) = 0;
return;
}
denorm = 0;
if (e < emin) {
denorm = 1;
n = emin - e;
if (n >= nbits) {
#ifdef IEEE_Arith /*{*/
switch (rounding) {
case Round_near:
if (n == nbits && (n < 2 || any_on(b,n-1)))
goto ret_tiny;
break;
case Round_up:
if (!sign)
goto ret_tiny;
break;
case Round_down:
if (sign)
goto ret_tiny;
}
#endif /* } IEEE_Arith */
Bfree(b);
retz:
#ifndef NO_ERRNO
errno = ERANGE;
#endif
retz1:
rvp->d = 0.;
return;
}
k = n - 1;
if (lostbits)
lostbits = 1;
else if (k > 0)
lostbits = any_on(b,k);
if (x[k>>kshift] & 1 << (k & kmask))
lostbits |= 2;
nbits -= n;
rshift(b,n);
e = emin;
}
if (lostbits) {
up = 0;
switch(rounding) {
case Round_zero:
break;
case Round_near:
if (lostbits & 2
&& (lostbits & 1) | (x[0] & 1))
up = 1;
break;
case Round_up:
up = 1 - sign;
break;
case Round_down:
up = sign;
}
if (up) {
k = b->wds;
b = increment(b);
x = b->x;
if (denorm) {
#if 0
if (nbits == Nbits - 1
&& x[nbits >> kshift] & 1 << (nbits & kmask))
denorm = 0; /* not currently used */
#endif
}
else if (b->wds > k
|| ((n = nbits & kmask) !=0
&& hi0bits(x[k-1]) < 32-n)) {
rshift(b,1);
if (++e > Emax)
goto ovfl;
}
}
}
#ifdef IEEE_Arith
if (denorm)
word0(rvp) = b->wds > 1 ? b->x[1] & ~0x100000 : 0;
else
word0(rvp) = (b->x[1] & ~0x100000) | ((e + 0x3ff + 52) << 20);
word1(rvp) = b->x[0];
#endif
#ifdef IBM
if ((j = e & 3)) {
k = b->x[0] & ((1 << j) - 1);
rshift(b,j);
if (k) {
switch(rounding) {
case Round_up:
if (!sign)
increment(b);
break;
case Round_down:
if (sign)
increment(b);
break;
case Round_near:
j = 1 << (j-1);
if (k & j && ((k & (j-1)) | lostbits))
increment(b);
}
}
}
e >>= 2;
word0(rvp) = b->x[1] | ((e + 65 + 13) << 24);
word1(rvp) = b->x[0];
#endif
#ifdef VAX
/* The next two lines ignore swap of low- and high-order 2 bytes. */
/* word0(rvp) = (b->x[1] & ~0x800000) | ((e + 129 + 55) << 23); */
/* word1(rvp) = b->x[0]; */
word0(rvp) = ((b->x[1] & ~0x800000) >> 16) | ((e + 129 + 55) << 7) | (b->x[1] << 16);
word1(rvp) = (b->x[0] >> 16) | (b->x[0] << 16);
#endif
Bfree(b);
}
#endif /*!NO_HEX_FP}*/
static int
#ifdef KR_headers
dshift(b, p2) Bigint *b; int p2;
#else
dshift(Bigint *b, int p2)
#endif
{
int rv = hi0bits(b->x[b->wds-1]) - 4;
if (p2 > 0)
rv -= p2;
return rv & kmask;
}
static int
quorem
#ifdef KR_headers
(b, S) Bigint *b, *S;
#else
(Bigint *b, Bigint *S)
#endif
{
int n;
ULong *bx, *bxe, q, *sx, *sxe;
#ifdef ULLong
ULLong borrow, carry, y, ys;
#else
ULong borrow, carry, y, ys;
#ifdef Pack_32
ULong si, z, zs;
#endif
#endif
n = S->wds;
#ifdef DEBUG
/*debug*/ if (b->wds > n)
/*debug*/ Bug("oversize b in quorem");
#endif
if (b->wds < n)
return 0;
sx = S->x;
sxe = sx + --n;
bx = b->x;
bxe = bx + n;
q = *bxe / (*sxe + 1); /* ensure q <= true quotient */
#ifdef DEBUG
#ifdef NO_STRTOD_BIGCOMP
/*debug*/ if (q > 9)
#else
/* An oversized q is possible when quorem is called from bigcomp and */
/* the input is near, e.g., twice the smallest denormalized number. */
/*debug*/ if (q > 15)
#endif
/*debug*/ Bug("oversized quotient in quorem");
#endif
if (q) {
borrow = 0;
carry = 0;
do {
#ifdef ULLong
ys = *sx++ * (ULLong)q + carry;
carry = ys >> 32;
y = *bx - (ys & FFFFFFFF) - borrow;
borrow = y >> 32 & (ULong)1;
*bx++ = y & FFFFFFFF;
#else
#ifdef Pack_32
si = *sx++;
ys = (si & 0xffff) * q + carry;
zs = (si >> 16) * q + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*bx >> 16) - (zs & 0xffff) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(bx, z, y);
#else
ys = *sx++ * q + carry;
carry = ys >> 16;
y = *bx - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
*bx++ = y & 0xffff;
#endif
#endif
}
while(sx <= sxe);
if (!*bxe) {
bx = b->x;
while(--bxe > bx && !*bxe)
--n;
b->wds = n;
}
}
if (cmp(b, S) >= 0) {
q++;
borrow = 0;
carry = 0;
bx = b->x;
sx = S->x;
do {
#ifdef ULLong
ys = *sx++ + carry;
carry = ys >> 32;
y = *bx - (ys & FFFFFFFF) - borrow;
borrow = y >> 32 & (ULong)1;
*bx++ = y & FFFFFFFF;
#else
#ifdef Pack_32
si = *sx++;
ys = (si & 0xffff) + carry;
zs = (si >> 16) + (ys >> 16);
carry = zs >> 16;
y = (*bx & 0xffff) - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
z = (*bx >> 16) - (zs & 0xffff) - borrow;
borrow = (z & 0x10000) >> 16;
Storeinc(bx, z, y);
#else
ys = *sx++ + carry;
carry = ys >> 16;
y = *bx - (ys & 0xffff) - borrow;
borrow = (y & 0x10000) >> 16;
*bx++ = y & 0xffff;
#endif
#endif
}
while(sx <= sxe);
bx = b->x;
bxe = bx + n;
if (!*bxe) {
while(--bxe > bx && !*bxe)
--n;
b->wds = n;
}
}
return q;
}
#if defined(Avoid_Underflow) || !defined(NO_STRTOD_BIGCOMP) /*{*/
static double
sulp
#ifdef KR_headers
(x, bc) U *x; BCinfo *bc;
#else
(U *x, BCinfo *bc)
#endif
{
U u;
double rv;
int i;
rv = ulp(x);
if (!bc->scale || (i = 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift)) <= 0)
return rv; /* Is there an example where i <= 0 ? */
word0(&u) = Exp_1 + (i << Exp_shift);
word1(&u) = 0;
return rv * u.d;
}
#endif /*}*/
#ifndef NO_STRTOD_BIGCOMP
static void
bigcomp
#ifdef KR_headers
(rv, s0, bc)
U *rv; CONST char *s0; BCinfo *bc;
#else
(U *rv, const char *s0, BCinfo *bc)
#endif
{
Bigint *b, *d;
int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
dsign = bc->dsign;
nd = bc->nd;
nd0 = bc->nd0;
p5 = nd + bc->e0 - 1;
speccase = 0;
#ifndef Sudden_Underflow
if (rv->d == 0.) { /* special case: value near underflow-to-zero */
/* threshold was rounded to zero */
b = i2b(1);
p2 = Emin - P + 1;
bbits = 1;
#ifdef Avoid_Underflow
word0(rv) = (P+2) << Exp_shift;
#else
word1(rv) = 1;
#endif
i = 0;
#ifdef Honor_FLT_ROUNDS
if (bc->rounding == 1)
#endif
{
speccase = 1;
--p2;
dsign = 0;
goto have_i;
}
}
else
#endif
b = d2b(rv, &p2, &bbits);
#ifdef Avoid_Underflow
p2 -= bc->scale;
#endif
/* floor(log2(rv)) == bbits - 1 + p2 */
/* Check for denormal case. */
i = P - bbits;
if (i > (j = P - Emin - 1 + p2)) {
#ifdef Sudden_Underflow
Bfree(b);
b = i2b(1);
p2 = Emin;
i = P - 1;
#ifdef Avoid_Underflow
word0(rv) = (1 + bc->scale) << Exp_shift;
#else
word0(rv) = Exp_msk1;
#endif
word1(rv) = 0;
#else
i = j;
#endif
}
#ifdef Honor_FLT_ROUNDS
if (bc->rounding != 1) {
if (i > 0)
b = lshift(b, i);
if (dsign)
b = increment(b);
}
else
#endif
{
b = lshift(b, ++i);
b->x[0] |= 1;
}
#ifndef Sudden_Underflow
have_i:
#endif
p2 -= p5 + i;
d = i2b(1);
/* Arrange for convenient computation of quotients:
* shift left if necessary so divisor has 4 leading 0 bits.
*/
if (p5 > 0)
d = pow5mult(d, p5);
else if (p5 < 0)
b = pow5mult(b, -p5);
if (p2 > 0) {
b2 = p2;
d2 = 0;
}
else {
b2 = 0;
d2 = -p2;
}
i = dshift(d, d2);
if ((b2 += i) > 0)
b = lshift(b, b2);
if ((d2 += i) > 0)
d = lshift(d, d2);
/* Now b/d = exactly half-way between the two floating-point values */
/* on either side of the input string. Compute first digit of b/d. */
if (!(dig = quorem(b,d))) {
b = multadd(b, 10, 0); /* very unlikely */
dig = quorem(b,d);
}
/* Compare b/d with s0 */
for(i = 0; i < nd0; ) {
if ((dd = s0[i++] - '0' - dig))
goto ret;
if (!b->x[0] && b->wds == 1) {
if (i < nd)
dd = 1;
goto ret;
}
b = multadd(b, 10, 0);
dig = quorem(b,d);
}
for(j = bc->dp1; i++ < nd;) {
if ((dd = s0[j++] - '0' - dig))
goto ret;
if (!b->x[0] && b->wds == 1) {
if (i < nd)
dd = 1;
goto ret;
}
b = multadd(b, 10, 0);
dig = quorem(b,d);
}
if (b->x[0] || b->wds > 1)
dd = -1;
ret:
Bfree(b);
Bfree(d);
#ifdef Honor_FLT_ROUNDS
if (bc->rounding != 1) {
if (dd < 0) {
if (bc->rounding == 0) {
if (!dsign)
goto retlow1;
}
else if (dsign)
goto rethi1;
}
else if (dd > 0) {
if (bc->rounding == 0) {
if (dsign)
goto rethi1;
goto ret1;
}
if (!dsign)
goto rethi1;
dval(rv) += 2.*sulp(rv,bc);
}
else {
bc->inexact = 0;
if (dsign)
goto rethi1;
}
}
else
#endif
if (speccase) {
if (dd <= 0)
rv->d = 0.;
}
else if (dd < 0) {
if (!dsign) /* does not happen for round-near */
retlow1:
dval(rv) -= sulp(rv,bc);
}
else if (dd > 0) {
if (dsign) {
rethi1:
dval(rv) += sulp(rv,bc);
}
}
else {
/* Exact half-way case: apply round-even rule. */
if ((j = ((word0(rv) & Exp_mask) >> Exp_shift) - bc->scale) <= 0) {
i = 1 - j;
if (i <= 31) {
if (word1(rv) & (0x1 << i))
goto odd;
}
else if (word0(rv) & (0x1 << (i-32)))
goto odd;
}
else if (word1(rv) & 1) {
odd:
if (dsign)
goto rethi1;
goto retlow1;
}
}
#ifdef Honor_FLT_ROUNDS
ret1:
#endif
return;
}
#endif /* NO_STRTOD_BIGCOMP */
double
fpconv_strtod
#ifdef KR_headers
(s00, se) CONST char *s00; char **se;
#else
(const char *s00, char **se)
#endif
{
int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1;
int esign, i, j, k, nd, nd0, nf, nz, nz0, nz1, sign;
CONST char *s, *s0, *s1;
double aadj, aadj1;
Long L;
U aadj2, adj, rv, rv0;
ULong y, z;
BCinfo bc;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
#ifdef Avoid_Underflow
ULong Lsb, Lsb1;
#endif
#ifdef SET_INEXACT
int oldinexact;
#endif
#ifndef NO_STRTOD_BIGCOMP
int req_bigcomp = 0;
#endif
#ifdef Honor_FLT_ROUNDS /*{*/
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
bc.rounding = Flt_Rounds;
#else /*}{*/
bc.rounding = 1;
switch(fegetround()) {
case FE_TOWARDZERO: bc.rounding = 0; break;
case FE_UPWARD: bc.rounding = 2; break;
case FE_DOWNWARD: bc.rounding = 3;
}
#endif /*}}*/
#endif /*}*/
#ifdef USE_LOCALE
CONST char *s2;
#endif
sign = nz0 = nz1 = nz = bc.dplen = bc.uflchk = 0;
dval(&rv) = 0.;
for(s = s00;;s++) switch(*s) {
case '-':
sign = 1;
/* no break */
case '+':
if (*++s)
goto break2;
/* no break */
case 0:
goto ret0;
case '\t':
case '\n':
case '\v':
case '\f':
case '\r':
case ' ':
continue;
default:
goto break2;
}
break2:
if (*s == '0') {
#ifndef NO_HEX_FP /*{*/
switch(s[1]) {
case 'x':
case 'X':
#ifdef Honor_FLT_ROUNDS
gethex(&s, &rv, bc.rounding, sign);
#else
gethex(&s, &rv, 1, sign);
#endif
goto ret;
}
#endif /*}*/
nz0 = 1;
while(*++s == '0') ;
if (!*s)
goto ret;
}
s0 = s;
y = z = 0;
for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
if (nd < 9)
y = 10*y + c - '0';
else if (nd < 16)
z = 10*z + c - '0';
nd0 = nd;
bc.dp0 = bc.dp1 = s - s0;
for(s1 = s; s1 > s0 && *--s1 == '0'; )
++nz1;
#ifdef USE_LOCALE
s1 = localeconv()->decimal_point;
if (c == *s1) {
c = '.';
if (*++s1) {
s2 = s;
for(;;) {
if (*++s2 != *s1) {
c = 0;
break;
}
if (!*++s1) {
s = s2;
break;
}
}
}
}
#endif
if (c == '.') {
c = *++s;
bc.dp1 = s - s0;
bc.dplen = bc.dp1 - bc.dp0;
if (!nd) {
for(; c == '0'; c = *++s)
nz++;
if (c > '0' && c <= '9') {
bc.dp0 = s0 - s;
bc.dp1 = bc.dp0 + bc.dplen;
s0 = s;
nf += nz;
nz = 0;
goto have_dig;
}
goto dig_done;
}
for(; c >= '0' && c <= '9'; c = *++s) {
have_dig:
nz++;
if (c -= '0') {
nf += nz;
for(i = 1; i < nz; i++)
if (nd++ < 9)
y *= 10;
else if (nd <= DBL_DIG + 1)
z *= 10;
if (nd++ < 9)
y = 10*y + c;
else if (nd <= DBL_DIG + 1)
z = 10*z + c;
nz = nz1 = 0;
}
}
}
dig_done:
e = 0;
if (c == 'e' || c == 'E') {
if (!nd && !nz && !nz0) {
goto ret0;
}
s00 = s;
esign = 0;
switch(c = *++s) {
case '-':
esign = 1;
case '+':
c = *++s;
}
if (c >= '0' && c <= '9') {
while(c == '0')
c = *++s;
if (c > '0' && c <= '9') {
L = c - '0';
s1 = s;
while((c = *++s) >= '0' && c <= '9')
L = 10*L + c - '0';
if (s - s1 > 8 || L > 19999)
/* Avoid confusion from exponents
* so large that e might overflow.
*/
e = 19999; /* safe for 16 bit ints */
else
e = (int)L;
if (esign)
e = -e;
}
else
e = 0;
}
else
s = s00;
}
if (!nd) {
if (!nz && !nz0) {
#ifdef INFNAN_CHECK
/* Check for Nan and Infinity */
if (!bc.dplen)
switch(c) {
case 'i':
case 'I':
if (match(&s,"nf")) {
--s;
if (!match(&s,"inity"))
++s;
word0(&rv) = 0x7ff00000;
word1(&rv) = 0;
goto ret;
}
break;
case 'n':
case 'N':
if (match(&s, "an")) {
word0(&rv) = NAN_WORD0;
word1(&rv) = NAN_WORD1;
#ifndef No_Hex_NaN
if (*s == '(') /*)*/
hexnan(&rv, &s);
#endif
goto ret;
}
}
#endif /* INFNAN_CHECK */
ret0:
s = s00;
sign = 0;
}
goto ret;
}
bc.e0 = e1 = e -= nf;
/* Now we have nd0 digits, starting at s0, followed by a
* decimal point, followed by nd-nd0 digits. The number we're
* after is the integer represented by those digits times
* 10**e */
if (!nd0)
nd0 = nd;
k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
dval(&rv) = y;
if (k > 9) {
#ifdef SET_INEXACT
if (k > DBL_DIG)
oldinexact = get_inexact();
#endif
dval(&rv) = tens[k - 9] * dval(&rv) + z;
}
bd0 = 0;
if (nd <= DBL_DIG
#ifndef RND_PRODQUOT
#ifndef Honor_FLT_ROUNDS
&& Flt_Rounds == 1
#endif
#endif
) {
if (!e)
goto ret;
#ifndef ROUND_BIASED_without_Round_Up
if (e > 0) {
if (e <= Ten_pmax) {
#ifdef VAX
goto vax_ovfl_check;
#else
#ifdef Honor_FLT_ROUNDS
/* round correctly FLT_ROUNDS = 2 or 3 */
if (sign) {
rv.d = -rv.d;
sign = 0;
}
#endif
/* rv = */ rounded_product(dval(&rv), tens[e]);
goto ret;
#endif
}
i = DBL_DIG - nd;
if (e <= Ten_pmax + i) {
/* A fancier test would sometimes let us do
* this for larger i values.
*/
#ifdef Honor_FLT_ROUNDS
/* round correctly FLT_ROUNDS = 2 or 3 */
if (sign) {
rv.d = -rv.d;
sign = 0;
}
#endif
e -= i;
dval(&rv) *= tens[i];
#ifdef VAX
/* VAX exponent range is so narrow we must
* worry about overflow here...
*/
vax_ovfl_check:
word0(&rv) -= P*Exp_msk1;
/* rv = */ rounded_product(dval(&rv), tens[e]);
if ((word0(&rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
goto ovfl;
word0(&rv) += P*Exp_msk1;
#else
/* rv = */ rounded_product(dval(&rv), tens[e]);
#endif
goto ret;
}
}
#ifndef Inaccurate_Divide
else if (e >= -Ten_pmax) {
#ifdef Honor_FLT_ROUNDS
/* round correctly FLT_ROUNDS = 2 or 3 */
if (sign) {
rv.d = -rv.d;
sign = 0;
}
#endif
/* rv = */ rounded_quotient(dval(&rv), tens[-e]);
goto ret;
}
#endif
#endif /* ROUND_BIASED_without_Round_Up */
}
e1 += nd - k;
#ifdef IEEE_Arith
#ifdef SET_INEXACT
bc.inexact = 1;
if (k <= DBL_DIG)
oldinexact = get_inexact();
#endif
#ifdef Avoid_Underflow
bc.scale = 0;
#endif
#ifdef Honor_FLT_ROUNDS
if (bc.rounding >= 2) {
if (sign)
bc.rounding = bc.rounding == 2 ? 0 : 2;
else
if (bc.rounding != 2)
bc.rounding = 0;
}
#endif
#endif /*IEEE_Arith*/
/* Get starting approximation = rv * 10**e1 */
if (e1 > 0) {
if ((i = e1 & 15))
dval(&rv) *= tens[i];
if (e1 &= ~15) {
if (e1 > DBL_MAX_10_EXP) {
ovfl:
/* Can't trust HUGE_VAL */
#ifdef IEEE_Arith
#ifdef Honor_FLT_ROUNDS
switch(bc.rounding) {
case 0: /* toward 0 */
case 3: /* toward -infinity */
word0(&rv) = Big0;
word1(&rv) = Big1;
break;
default:
word0(&rv) = Exp_mask;
word1(&rv) = 0;
}
#else /*Honor_FLT_ROUNDS*/
word0(&rv) = Exp_mask;
word1(&rv) = 0;
#endif /*Honor_FLT_ROUNDS*/
#ifdef SET_INEXACT
/* set overflow bit */
dval(&rv0) = 1e300;
dval(&rv0) *= dval(&rv0);
#endif
#else /*IEEE_Arith*/
word0(&rv) = Big0;
word1(&rv) = Big1;
#endif /*IEEE_Arith*/
range_err:
if (bd0) {
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
}
#ifndef NO_ERRNO
errno = ERANGE;
#endif
goto ret;
}
e1 >>= 4;
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
dval(&rv) *= bigtens[j];
/* The last multiplication could overflow. */
word0(&rv) -= P*Exp_msk1;
dval(&rv) *= bigtens[j];
if ((z = word0(&rv) & Exp_mask)
> Exp_msk1*(DBL_MAX_EXP+Bias-P))
goto ovfl;
if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
/* set to largest number */
/* (Can't trust DBL_MAX) */
word0(&rv) = Big0;
word1(&rv) = Big1;
}
else
word0(&rv) += P*Exp_msk1;
}
}
else if (e1 < 0) {
e1 = -e1;
if ((i = e1 & 15))
dval(&rv) /= tens[i];
if (e1 >>= 4) {
if (e1 >= 1 << n_bigtens)
goto undfl;
#ifdef Avoid_Underflow
if (e1 & Scale_Bit)
bc.scale = 2*P;
for(j = 0; e1 > 0; j++, e1 >>= 1)
if (e1 & 1)
dval(&rv) *= tinytens[j];
if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask)
>> Exp_shift)) > 0) {
/* scaled rv is denormal; clear j low bits */
if (j >= 32) {
if (j > 54)
goto undfl;
word1(&rv) = 0;
if (j >= 53)
word0(&rv) = (P+2)*Exp_msk1;
else
word0(&rv) &= 0xffffffff << (j-32);
}
else
word1(&rv) &= 0xffffffff << j;
}
#else
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
dval(&rv) *= tinytens[j];
/* The last multiplication could underflow. */
dval(&rv0) = dval(&rv);
dval(&rv) *= tinytens[j];
if (!dval(&rv)) {
dval(&rv) = 2.*dval(&rv0);
dval(&rv) *= tinytens[j];
#endif
if (!dval(&rv)) {
undfl:
dval(&rv) = 0.;
goto range_err;
}
#ifndef Avoid_Underflow
word0(&rv) = Tiny0;
word1(&rv) = Tiny1;
/* The refinement below will clean
* this approximation up.
*/
}
#endif
}
}
/* Now the hard part -- adjusting rv to the correct value.*/
/* Put digits into bd: true value = bd * 10^e */
bc.nd = nd - nz1;
#ifndef NO_STRTOD_BIGCOMP
bc.nd0 = nd0; /* Only needed if nd > strtod_diglim, but done here */
/* to silence an erroneous warning about bc.nd0 */
/* possibly not being initialized. */
if (nd > strtod_diglim) {
/* ASSERT(strtod_diglim >= 18); 18 == one more than the */
/* minimum number of decimal digits to distinguish double values */
/* in IEEE arithmetic. */
i = j = 18;
if (i > nd0)
j += bc.dplen;
for(;;) {
if (--j < bc.dp1 && j >= bc.dp0)
j = bc.dp0 - 1;
if (s0[j] != '0')
break;
--i;
}
e += nd - i;
nd = i;
if (nd0 > nd)
nd0 = nd;
if (nd < 9) { /* must recompute y */
y = 0;
for(i = 0; i < nd0; ++i)
y = 10*y + s0[i] - '0';
for(j = bc.dp1; i < nd; ++i)
y = 10*y + s0[j++] - '0';
}
}
#endif
bd0 = s2b(s0, nd0, nd, y, bc.dplen);
for(;;) {
bd = Balloc(bd0->k);
Bcopy(bd, bd0);
bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */
bs = i2b(1);
if (e >= 0) {
bb2 = bb5 = 0;
bd2 = bd5 = e;
}
else {
bb2 = bb5 = -e;
bd2 = bd5 = 0;
}
if (bbe >= 0)
bb2 += bbe;
else
bd2 -= bbe;
bs2 = bb2;
#ifdef Honor_FLT_ROUNDS
if (bc.rounding != 1)
bs2++;
#endif
#ifdef Avoid_Underflow
Lsb = LSB;
Lsb1 = 0;
j = bbe - bc.scale;
i = j + bbbits - 1; /* logb(rv) */
j = P + 1 - bbbits;
if (i < Emin) { /* denormal */
i = Emin - i;
j -= i;
if (i < 32)
Lsb <<= i;
else if (i < 52)
Lsb1 = Lsb << (i-32);
else
Lsb1 = Exp_mask;
}
#else /*Avoid_Underflow*/
#ifdef Sudden_Underflow
#ifdef IBM
j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
#else
j = P + 1 - bbbits;
#endif
#else /*Sudden_Underflow*/
j = bbe;
i = j + bbbits - 1; /* logb(rv) */
if (i < Emin) /* denormal */
j += P - Emin;
else
j = P + 1 - bbbits;
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
bb2 += j;
bd2 += j;
#ifdef Avoid_Underflow
bd2 += bc.scale;
#endif
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
if (i > 0) {
bb2 -= i;
bd2 -= i;
bs2 -= i;
}
if (bb5 > 0) {
bs = pow5mult(bs, bb5);
bb1 = mult(bs, bb);
Bfree(bb);
bb = bb1;
}
if (bb2 > 0)
bb = lshift(bb, bb2);
if (bd5 > 0)
bd = pow5mult(bd, bd5);
if (bd2 > 0)
bd = lshift(bd, bd2);
if (bs2 > 0)
bs = lshift(bs, bs2);
delta = diff(bb, bd);
bc.dsign = delta->sign;
delta->sign = 0;
i = cmp(delta, bs);
#ifndef NO_STRTOD_BIGCOMP /*{*/
if (bc.nd > nd && i <= 0) {
if (bc.dsign) {
/* Must use bigcomp(). */
req_bigcomp = 1;
break;
}
#ifdef Honor_FLT_ROUNDS
if (bc.rounding != 1) {
if (i < 0) {
req_bigcomp = 1;
break;
}
}
else
#endif
i = -1; /* Discarded digits make delta smaller. */
}
#endif /*}*/
#ifdef Honor_FLT_ROUNDS /*{*/
if (bc.rounding != 1) {
if (i < 0) {
/* Error is less than an ulp */
if (!delta->x[0] && delta->wds <= 1) {
/* exact */
#ifdef SET_INEXACT
bc.inexact = 0;
#endif
break;
}
if (bc.rounding) {
if (bc.dsign) {
adj.d = 1.;
goto apply_adj;
}
}
else if (!bc.dsign) {
adj.d = -1.;
if (!word1(&rv)
&& !(word0(&rv) & Frac_mask)) {
y = word0(&rv) & Exp_mask;
#ifdef Avoid_Underflow
if (!bc.scale || y > 2*P*Exp_msk1)
#else
if (y)
#endif
{
delta = lshift(delta,Log2P);
if (cmp(delta, bs) <= 0)
adj.d = -0.5;
}
}
apply_adj:
#ifdef Avoid_Underflow /*{*/
if (bc.scale && (y = word0(&rv) & Exp_mask)
<= 2*P*Exp_msk1)
word0(&adj) += (2*P+1)*Exp_msk1 - y;
#else
#ifdef Sudden_Underflow
if ((word0(&rv) & Exp_mask) <=
P*Exp_msk1) {
word0(&rv) += P*Exp_msk1;
dval(&rv) += adj.d*ulp(dval(&rv));
word0(&rv) -= P*Exp_msk1;
}
else
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow}*/
dval(&rv) += adj.d*ulp(&rv);
}
break;
}
adj.d = ratio(delta, bs);
if (adj.d < 1.)
adj.d = 1.;
if (adj.d <= 0x7ffffffe) {
/* adj = rounding ? ceil(adj) : floor(adj); */
y = adj.d;
if (y != adj.d) {
if (!((bc.rounding>>1) ^ bc.dsign))
y++;
adj.d = y;
}
}
#ifdef Avoid_Underflow /*{*/
if (bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
word0(&adj) += (2*P+1)*Exp_msk1 - y;
#else
#ifdef Sudden_Underflow
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
word0(&rv) += P*Exp_msk1;
adj.d *= ulp(dval(&rv));
if (bc.dsign)
dval(&rv) += adj.d;
else
dval(&rv) -= adj.d;
word0(&rv) -= P*Exp_msk1;
goto cont;
}
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow}*/
adj.d *= ulp(&rv);
if (bc.dsign) {
if (word0(&rv) == Big0 && word1(&rv) == Big1)
goto ovfl;
dval(&rv) += adj.d;
}
else
dval(&rv) -= adj.d;
goto cont;
}
#endif /*}Honor_FLT_ROUNDS*/
if (i < 0) {
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
#ifdef IEEE_Arith /*{*/
#ifdef Avoid_Underflow
|| (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
#else
|| (word0(&rv) & Exp_mask) <= Exp_msk1
#endif
#endif /*}*/
) {
#ifdef SET_INEXACT
if (!delta->x[0] && delta->wds <= 1)
bc.inexact = 0;
#endif
break;
}
if (!delta->x[0] && delta->wds <= 1) {
/* exact result */
#ifdef SET_INEXACT
bc.inexact = 0;
#endif
break;
}
delta = lshift(delta,Log2P);
if (cmp(delta, bs) > 0)
goto drop_down;
break;
}
if (i == 0) {
/* exactly half-way between */
if (bc.dsign) {
if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
&& word1(&rv) == (
#ifdef Avoid_Underflow
(bc.scale && (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1)
? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) :
#endif
0xffffffff)) {
/*boundary case -- increment exponent*/
if (word0(&rv) == Big0 && word1(&rv) == Big1)
goto ovfl;
word0(&rv) = (word0(&rv) & Exp_mask)
+ Exp_msk1
#ifdef IBM
| Exp_msk1 >> 4
#endif
;
word1(&rv) = 0;
#ifdef Avoid_Underflow
bc.dsign = 0;
#endif
break;
}
}
else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) {
drop_down:
/* boundary case -- decrement exponent */
#ifdef Sudden_Underflow /*{{*/
L = word0(&rv) & Exp_mask;
#ifdef IBM
if (L < Exp_msk1)
#else
#ifdef Avoid_Underflow
if (L <= (bc.scale ? (2*P+1)*Exp_msk1 : Exp_msk1))
#else
if (L <= Exp_msk1)
#endif /*Avoid_Underflow*/
#endif /*IBM*/
{
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
L -= Exp_msk1;
#else /*Sudden_Underflow}{*/
#ifdef Avoid_Underflow
if (bc.scale) {
L = word0(&rv) & Exp_mask;
if (L <= (2*P+1)*Exp_msk1) {
if (L > (P+2)*Exp_msk1)
/* round even ==> */
/* accept rv */
break;
/* rv = smallest denormal */
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
}
#endif /*Avoid_Underflow*/
L = (word0(&rv) & Exp_mask) - Exp_msk1;
#endif /*Sudden_Underflow}}*/
word0(&rv) = L | Bndry_mask1;
word1(&rv) = 0xffffffff;
#ifdef IBM
goto cont;
#else
#ifndef NO_STRTOD_BIGCOMP
if (bc.nd > nd)
goto cont;
#endif
break;
#endif
}
#ifndef ROUND_BIASED
#ifdef Avoid_Underflow
if (Lsb1) {
if (!(word0(&rv) & Lsb1))
break;
}
else if (!(word1(&rv) & Lsb))
break;
#else
if (!(word1(&rv) & LSB))
break;
#endif
#endif
if (bc.dsign)
#ifdef Avoid_Underflow
dval(&rv) += sulp(&rv, &bc);
#else
dval(&rv) += ulp(&rv);
#endif
#ifndef ROUND_BIASED
else {
#ifdef Avoid_Underflow
dval(&rv) -= sulp(&rv, &bc);
#else
dval(&rv) -= ulp(&rv);
#endif
#ifndef Sudden_Underflow
if (!dval(&rv)) {
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
#endif
}
#ifdef Avoid_Underflow
bc.dsign = 1 - bc.dsign;
#endif
#endif
break;
}
if ((aadj = ratio(delta, bs)) <= 2.) {
if (bc.dsign)
aadj = aadj1 = 1.;
else if (word1(&rv) || word0(&rv) & Bndry_mask) {
#ifndef Sudden_Underflow
if (word1(&rv) == Tiny1 && !word0(&rv)) {
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
#endif
aadj = 1.;
aadj1 = -1.;
}
else {
/* special case -- power of FLT_RADIX to be */
/* rounded down... */
if (aadj < 2./FLT_RADIX)
aadj = 1./FLT_RADIX;
else
aadj *= 0.5;
aadj1 = -aadj;
}
}
else {
aadj *= 0.5;
aadj1 = bc.dsign ? aadj : -aadj;
#ifdef Check_FLT_ROUNDS
switch(bc.rounding) {
case 2: /* towards +infinity */
aadj1 -= 0.5;
break;
case 0: /* towards 0 */
case 3: /* towards -infinity */
aadj1 += 0.5;
}
#else
if (Flt_Rounds == 0)
aadj1 += 0.5;
#endif /*Check_FLT_ROUNDS*/
}
y = word0(&rv) & Exp_mask;
/* Check for overflow */
if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
dval(&rv0) = dval(&rv);
word0(&rv) -= P*Exp_msk1;
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
if ((word0(&rv) & Exp_mask) >=
Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
if (word0(&rv0) == Big0 && word1(&rv0) == Big1)
goto ovfl;
word0(&rv) = Big0;
word1(&rv) = Big1;
goto cont;
}
else
word0(&rv) += P*Exp_msk1;
}
else {
#ifdef Avoid_Underflow
if (bc.scale && y <= 2*P*Exp_msk1) {
if (aadj <= 0x7fffffff) {
if ((z = aadj) <= 0)
z = 1;
aadj = z;
aadj1 = bc.dsign ? aadj : -aadj;
}
dval(&aadj2) = aadj1;
word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
aadj1 = dval(&aadj2);
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
if (rv.d == 0.)
#ifdef NO_STRTOD_BIGCOMP
goto undfl;
#else
{
if (bc.nd > nd)
bc.dsign = 1;
break;
}
#endif
}
else {
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
}
#else
#ifdef Sudden_Underflow
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1) {
dval(&rv0) = dval(&rv);
word0(&rv) += P*Exp_msk1;
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
#ifdef IBM
if ((word0(&rv) & Exp_mask) < P*Exp_msk1)
#else
if ((word0(&rv) & Exp_mask) <= P*Exp_msk1)
#endif
{
if (word0(&rv0) == Tiny0
&& word1(&rv0) == Tiny1) {
if (bc.nd >nd) {
bc.uflchk = 1;
break;
}
goto undfl;
}
word0(&rv) = Tiny0;
word1(&rv) = Tiny1;
goto cont;
}
else
word0(&rv) -= P*Exp_msk1;
}
else {
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
}
#else /*Sudden_Underflow*/
/* Compute adj so that the IEEE rounding rules will
* correctly round rv + adj in some half-way cases.
* If rv * ulp(rv) is denormalized (i.e.,
* y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
* trouble from bits lost to denormalization;
* example: 1.2e-307 .
*/
if (y <= (P-1)*Exp_msk1 && aadj > 1.) {
aadj1 = (double)(int)(aadj + 0.5);
if (!bc.dsign)
aadj1 = -aadj1;
}
adj.d = aadj1 * ulp(&rv);
dval(&rv) += adj.d;
#endif /*Sudden_Underflow*/
#endif /*Avoid_Underflow*/
}
z = word0(&rv) & Exp_mask;
#ifndef SET_INEXACT
if (bc.nd == nd) {
#ifdef Avoid_Underflow
if (!bc.scale)
#endif
if (y == z) {
/* Can we stop now? */
L = (Long)aadj;
aadj -= L;
/* The tolerances below are conservative. */
if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
if (aadj < .4999999 || aadj > .5000001)
break;
}
else if (aadj < .4999999/FLT_RADIX)
break;
}
}
#endif
cont:
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(delta);
}
Bfree(bb);
Bfree(bd);
Bfree(bs);
Bfree(bd0);
Bfree(delta);
#ifndef NO_STRTOD_BIGCOMP
if (req_bigcomp) {
bd0 = 0;
bc.e0 += nz1;
bigcomp(&rv, s0, &bc);
y = word0(&rv) & Exp_mask;
if (y == Exp_mask)
goto ovfl;
if (y == 0 && rv.d == 0.)
goto undfl;
}
#endif
#ifdef SET_INEXACT
if (bc.inexact) {
if (!oldinexact) {
word0(&rv0) = Exp_1 + (70 << Exp_shift);
word1(&rv0) = 0;
dval(&rv0) += 1.;
}
}
else if (!oldinexact)
clear_inexact();
#endif
#ifdef Avoid_Underflow
if (bc.scale) {
word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
word1(&rv0) = 0;
dval(&rv) *= dval(&rv0);
#ifndef NO_ERRNO
/* try to avoid the bug of testing an 8087 register value */
#ifdef IEEE_Arith
if (!(word0(&rv) & Exp_mask))
#else
if (word0(&rv) == 0 && word1(&rv) == 0)
#endif
errno = ERANGE;
#endif
}
#endif /* Avoid_Underflow */
#ifdef SET_INEXACT
if (bc.inexact && !(word0(&rv) & Exp_mask)) {
/* set underflow bit */
dval(&rv0) = 1e-300;
dval(&rv0) *= dval(&rv0);
}
#endif
ret:
if (se)
*se = (char *)s;
return sign ? -dval(&rv) : dval(&rv);
}
#ifndef MULTIPLE_THREADS
static char *dtoa_result;
#endif
static char *
#ifdef KR_headers
rv_alloc(i) int i;
#else
rv_alloc(int i)
#endif
{
int j, k, *r;
j = sizeof(ULong);
for(k = 0;
sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i;
j <<= 1)
k++;
r = (int*)Balloc(k);
*r = k;
return
#ifndef MULTIPLE_THREADS
dtoa_result =
#endif
(char *)(r+1);
}
static char *
#ifdef KR_headers
nrv_alloc(s, rve, n) char *s, **rve; int n;
#else
nrv_alloc(const char *s, char **rve, int n)
#endif
{
char *rv, *t;
t = rv = rv_alloc(n);
while((*t = *s++)) t++;
if (rve)
*rve = t;
return rv;
}
/* freedtoa(s) must be used to free values s returned by dtoa
* when MULTIPLE_THREADS is #defined. It should be used in all cases,
* but for consistency with earlier versions of dtoa, it is optional
* when MULTIPLE_THREADS is not defined.
*/
void
#ifdef KR_headers
freedtoa(s) char *s;
#else
freedtoa(char *s)
#endif
{
Bigint *b = (Bigint *)((int *)s - 1);
b->maxwds = 1 << (b->k = *(int*)b);
Bfree(b);
#ifndef MULTIPLE_THREADS
if (s == dtoa_result)
dtoa_result = 0;
#endif
}
/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
*
* Inspired by "How to Print Floating-Point Numbers Accurately" by
* Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126].
*
* Modifications:
* 1. Rather than iterating, we use a simple numeric overestimate
* to determine k = floor(log10(d)). We scale relevant
* quantities using O(log2(k)) rather than O(k) multiplications.
* 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
* try to generate digits strictly left to right. Instead, we
* compute with fewer bits and propagate the carry if necessary
* when rounding the final digit up. This is often faster.
* 3. Under the assumption that input will be rounded nearest,
* mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
* That is, we allow equality in stopping tests when the
* round-nearest rule will give the same floating-point value
* as would satisfaction of the stopping test with strict
* inequality.
* 4. We remove common factors of powers of 2 from relevant
* quantities.
* 5. When converting floating-point integers less than 1e16,
* we use floating-point arithmetic rather than resorting
* to multiple-precision integers.
* 6. When asked to produce fewer than 15 digits, we first try
* to get by with floating-point arithmetic; we resort to
* multiple-precision integer arithmetic only if we cannot
* guarantee that the floating-point calculation has given
* the correctly rounded result. For k requested digits and
* "uniformly" distributed input, the probability is
* something like 10^(k-15) that we must resort to the Long
* calculation.
*/
char *
dtoa
#ifdef KR_headers
(dd, mode, ndigits, decpt, sign, rve)
double dd; int mode, ndigits, *decpt, *sign; char **rve;
#else
(double dd, int mode, int ndigits, int *decpt, int *sign, char **rve)
#endif
{
/* Arguments ndigits, decpt, sign are similar to those
of ecvt and fcvt; trailing zeros are suppressed from
the returned string. If not null, *rve is set to point
to the end of the return value. If d is +-Infinity or NaN,
then *decpt is set to 9999.
mode:
0 ==> shortest string that yields d when read in
and rounded to nearest.
1 ==> like 0, but with Steele & White stopping rule;
e.g. with IEEE P754 arithmetic , mode 0 gives
1e23 whereas mode 1 gives 9.999999999999999e22.
2 ==> max(1,ndigits) significant digits. This gives a
return value similar to that of ecvt, except
that trailing zeros are suppressed.
3 ==> through ndigits past the decimal point. This
gives a return value similar to that from fcvt,
except that trailing zeros are suppressed, and
ndigits can be negative.
4,5 ==> similar to 2 and 3, respectively, but (in
round-nearest mode) with the tests of mode 0 to
possibly return a shorter string that rounds to d.
With IEEE arithmetic and compilation with
-DHonor_FLT_ROUNDS, modes 4 and 5 behave the same
as modes 2 and 3 when FLT_ROUNDS != 1.
6-9 ==> Debugging modes similar to mode - 4: don't try
fast floating-point estimate (if applicable).
Values of mode other than 0-9 are treated as mode 0.
Sufficient space is allocated to the return value
to hold the suppressed trailing zeros.
*/
int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
spec_case, try_quick;
Long L;
#ifndef Sudden_Underflow
int denorm;
ULong x;
#endif
Bigint *b, *b1, *delta, *mlo, *mhi, *S;
U d2, eps, u;
double ds;
char *s, *s0;
#ifndef No_leftright
#ifdef IEEE_Arith
U eps1;
#endif
#endif
#ifdef SET_INEXACT
int inexact, oldinexact;
#endif
#ifdef Honor_FLT_ROUNDS /*{*/
int Rounding;
#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */
Rounding = Flt_Rounds;
#else /*}{*/
Rounding = 1;
switch(fegetround()) {
case FE_TOWARDZERO: Rounding = 0; break;
case FE_UPWARD: Rounding = 2; break;
case FE_DOWNWARD: Rounding = 3;
}
#endif /*}}*/
#endif /*}*/
#ifndef MULTIPLE_THREADS
if (dtoa_result) {
freedtoa(dtoa_result);
dtoa_result = 0;
}
#endif
u.d = dd;
if (word0(&u) & Sign_bit) {
/* set sign for everything, including 0's and NaNs */
*sign = 1;
word0(&u) &= ~Sign_bit; /* clear sign bit */
}
else
*sign = 0;
#if defined(IEEE_Arith) + defined(VAX)
#ifdef IEEE_Arith
if ((word0(&u) & Exp_mask) == Exp_mask)
#else
if (word0(&u) == 0x8000)
#endif
{
/* Infinity or NaN */
*decpt = 9999;
#ifdef IEEE_Arith
if (!word1(&u) && !(word0(&u) & 0xfffff))
return nrv_alloc("Infinity", rve, 8);
#endif
return nrv_alloc("NaN", rve, 3);
}
#endif
#ifdef IBM
dval(&u) += 0; /* normalize */
#endif
if (!dval(&u)) {
*decpt = 1;
return nrv_alloc("0", rve, 1);
}
#ifdef SET_INEXACT
try_quick = oldinexact = get_inexact();
inexact = 1;
#endif
#ifdef Honor_FLT_ROUNDS
if (Rounding >= 2) {
if (*sign)
Rounding = Rounding == 2 ? 0 : 2;
else
if (Rounding != 2)
Rounding = 0;
}
#endif
b = d2b(&u, &be, &bbits);
#ifdef Sudden_Underflow
i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
#else
if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) {
#endif
dval(&d2) = dval(&u);
word0(&d2) &= Frac_mask1;
word0(&d2) |= Exp_11;
#ifdef IBM
if (j = 11 - hi0bits(word0(&d2) & Frac_mask))
dval(&d2) /= 1 << j;
#endif
/* log(x) ~=~ log(1.5) + (x-1.5)/1.5
* log10(x) = log(x) / log(10)
* ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
* log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
*
* This suggests computing an approximation k to log10(d) by
*
* k = (i - Bias)*0.301029995663981
* + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
*
* We want k to be too large rather than too small.
* The error in the first-order Taylor series approximation
* is in our favor, so we just round up the constant enough
* to compensate for any error in the multiplication of
* (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
* and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
* adding 1e-13 to the constant term more than suffices.
* Hence we adjust the constant term to 0.1760912590558.
* (We could get a more accurate k by invoking log10,
* but this is probably not worthwhile.)
*/
i -= Bias;
#ifdef IBM
i <<= 2;
i += j;
#endif
#ifndef Sudden_Underflow
denorm = 0;
}
else {
/* d is denormalized */
i = bbits + be + (Bias + (P-1) - 1);
x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32)
: word1(&u) << (32 - i);
dval(&d2) = x;
word0(&d2) -= 31*Exp_msk1; /* adjust exponent */
i -= (Bias + (P-1) - 1) + 1;
denorm = 1;
}
#endif
ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
k = (int)ds;
if (ds < 0. && ds != k)
k--; /* want k = floor(ds) */
k_check = 1;
if (k >= 0 && k <= Ten_pmax) {
if (dval(&u) < tens[k])
k--;
k_check = 0;
}
j = bbits - i - 1;
if (j >= 0) {
b2 = 0;
s2 = j;
}
else {
b2 = -j;
s2 = 0;
}
if (k >= 0) {
b5 = 0;
s5 = k;
s2 += k;
}
else {
b2 -= k;
b5 = -k;
s5 = 0;
}
if (mode < 0 || mode > 9)
mode = 0;
#ifndef SET_INEXACT
#ifdef Check_FLT_ROUNDS
try_quick = Rounding == 1;
#else
try_quick = 1;
#endif
#endif /*SET_INEXACT*/
if (mode > 5) {
mode -= 4;
try_quick = 0;
}
leftright = 1;
ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */
/* silence erroneous "gcc -Wall" warning. */
switch(mode) {
case 0:
case 1:
i = 18;
ndigits = 0;
break;
case 2:
leftright = 0;
/* no break */
case 4:
if (ndigits <= 0)
ndigits = 1;
ilim = ilim1 = i = ndigits;
break;
case 3:
leftright = 0;
/* no break */
case 5:
i = ndigits + k + 1;
ilim = i;
ilim1 = i - 1;
if (i <= 0)
i = 1;
}
s = s0 = rv_alloc(i);
#ifdef Honor_FLT_ROUNDS
if (mode > 1 && Rounding != 1)
leftright = 0;
#endif
if (ilim >= 0 && ilim <= Quick_max && try_quick) {
/* Try to get by with floating-point arithmetic. */
i = 0;
dval(&d2) = dval(&u);
k0 = k;
ilim0 = ilim;
ieps = 2; /* conservative */
if (k > 0) {
ds = tens[k&0xf];
j = k >> 4;
if (j & Bletch) {
/* prevent overflows */
j &= Bletch - 1;
dval(&u) /= bigtens[n_bigtens-1];
ieps++;
}
for(; j; j >>= 1, i++)
if (j & 1) {
ieps++;
ds *= bigtens[i];
}
dval(&u) /= ds;
}
else if ((j1 = -k)) {
dval(&u) *= tens[j1 & 0xf];
for(j = j1 >> 4; j; j >>= 1, i++)
if (j & 1) {
ieps++;
dval(&u) *= bigtens[i];
}
}
if (k_check && dval(&u) < 1. && ilim > 0) {
if (ilim1 <= 0)
goto fast_failed;
ilim = ilim1;
k--;
dval(&u) *= 10.;
ieps++;
}
dval(&eps) = ieps*dval(&u) + 7.;
word0(&eps) -= (P-1)*Exp_msk1;
if (ilim == 0) {
S = mhi = 0;
dval(&u) -= 5.;
if (dval(&u) > dval(&eps))
goto one_digit;
if (dval(&u) < -dval(&eps))
goto no_digits;
goto fast_failed;
}
#ifndef No_leftright
if (leftright) {
/* Use Steele & White method of only
* generating digits needed.
*/
dval(&eps) = 0.5/tens[ilim-1] - dval(&eps);
#ifdef IEEE_Arith
if (k0 < 0 && j1 >= 307) {
eps1.d = 1.01e256; /* 1.01 allows roundoff in the next few lines */
word0(&eps1) -= Exp_msk1 * (Bias+P-1);
dval(&eps1) *= tens[j1 & 0xf];
for(i = 0, j = (j1-256) >> 4; j; j >>= 1, i++)
if (j & 1)
dval(&eps1) *= bigtens[i];
if (eps.d < eps1.d)
eps.d = eps1.d;
}
#endif
for(i = 0;;) {
L = dval(&u);
dval(&u) -= L;
*s++ = '0' + (int)L;
if (1. - dval(&u) < dval(&eps))
goto bump_up;
if (dval(&u) < dval(&eps))
goto ret1;
if (++i >= ilim)
break;
dval(&eps) *= 10.;
dval(&u) *= 10.;
}
}
else {
#endif
/* Generate ilim digits, then fix them up. */
dval(&eps) *= tens[ilim-1];
for(i = 1;; i++, dval(&u) *= 10.) {
L = (Long)(dval(&u));
if (!(dval(&u) -= L))
ilim = i;
*s++ = '0' + (int)L;
if (i == ilim) {
if (dval(&u) > 0.5 + dval(&eps))
goto bump_up;
else if (dval(&u) < 0.5 - dval(&eps)) {
while(*--s == '0');
s++;
goto ret1;
}
break;
}
}
#ifndef No_leftright
}
#endif
fast_failed:
s = s0;
dval(&u) = dval(&d2);
k = k0;
ilim = ilim0;
}
/* Do we have a "small" integer? */
if (be >= 0 && k <= Int_max) {
/* Yes. */
ds = tens[k];
if (ndigits < 0 && ilim <= 0) {
S = mhi = 0;
if (ilim < 0 || dval(&u) <= 5*ds)
goto no_digits;
goto one_digit;
}
for(i = 1;; i++, dval(&u) *= 10.) {
L = (Long)(dval(&u) / ds);
dval(&u) -= L*ds;
#ifdef Check_FLT_ROUNDS
/* If FLT_ROUNDS == 2, L will usually be high by 1 */
if (dval(&u) < 0) {
L--;
dval(&u) += ds;
}
#endif
*s++ = '0' + (int)L;
if (!dval(&u)) {
#ifdef SET_INEXACT
inexact = 0;
#endif
break;
}
if (i == ilim) {
#ifdef Honor_FLT_ROUNDS
if (mode > 1)
switch(Rounding) {
case 0: goto ret1;
case 2: goto bump_up;
}
#endif
dval(&u) += dval(&u);
#ifdef ROUND_BIASED
if (dval(&u) >= ds)
#else
if (dval(&u) > ds || (dval(&u) == ds && L & 1))
#endif
{
bump_up:
while(*--s == '9')
if (s == s0) {
k++;
*s = '0';
break;
}
++*s++;
}
break;
}
}
goto ret1;
}
m2 = b2;
m5 = b5;
mhi = mlo = 0;
if (leftright) {
i =
#ifndef Sudden_Underflow
denorm ? be + (Bias + (P-1) - 1 + 1) :
#endif
#ifdef IBM
1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
#else
1 + P - bbits;
#endif
b2 += i;
s2 += i;
mhi = i2b(1);
}
if (m2 > 0 && s2 > 0) {
i = m2 < s2 ? m2 : s2;
b2 -= i;
m2 -= i;
s2 -= i;
}
if (b5 > 0) {
if (leftright) {
if (m5 > 0) {
mhi = pow5mult(mhi, m5);
b1 = mult(mhi, b);
Bfree(b);
b = b1;
}
if ((j = b5 - m5))
b = pow5mult(b, j);
}
else
b = pow5mult(b, b5);
}
S = i2b(1);
if (s5 > 0)
S = pow5mult(S, s5);
/* Check for special case that d is a normalized power of 2. */
spec_case = 0;
if ((mode < 2 || leftright)
#ifdef Honor_FLT_ROUNDS
&& Rounding == 1
#endif
) {
if (!word1(&u) && !(word0(&u) & Bndry_mask)
#ifndef Sudden_Underflow
&& word0(&u) & (Exp_mask & ~Exp_msk1)
#endif
) {
/* The special case */
b2 += Log2P;
s2 += Log2P;
spec_case = 1;
}
}
/* Arrange for convenient computation of quotients:
* shift left if necessary so divisor has 4 leading 0 bits.
*
* Perhaps we should just compute leading 28 bits of S once
* and for all and pass them and a shift to quorem, so it
* can do shifts and ors to compute the numerator for q.
*/
i = dshift(S, s2);
b2 += i;
m2 += i;
s2 += i;
if (b2 > 0)
b = lshift(b, b2);
if (s2 > 0)
S = lshift(S, s2);
if (k_check) {
if (cmp(b,S) < 0) {
k--;
b = multadd(b, 10, 0); /* we botched the k estimate */
if (leftright)
mhi = multadd(mhi, 10, 0);
ilim = ilim1;
}
}
if (ilim <= 0 && (mode == 3 || mode == 5)) {
if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
/* no digits, fcvt style */
no_digits:
k = -1 - ndigits;
goto ret;
}
one_digit:
*s++ = '1';
k++;
goto ret;
}
if (leftright) {
if (m2 > 0)
mhi = lshift(mhi, m2);
/* Compute mlo -- check for special case
* that d is a normalized power of 2.
*/
mlo = mhi;
if (spec_case) {
mhi = Balloc(mhi->k);
Bcopy(mhi, mlo);
mhi = lshift(mhi, Log2P);
}
for(i = 1;;i++) {
dig = quorem(b,S) + '0';
/* Do we yet have the shortest decimal string
* that will round to d?
*/
j = cmp(b, mlo);
delta = diff(S, mhi);
j1 = delta->sign ? 1 : cmp(b, delta);
Bfree(delta);
#ifndef ROUND_BIASED
if (j1 == 0 && mode != 1 && !(word1(&u) & 1)
#ifdef Honor_FLT_ROUNDS
&& Rounding >= 1
#endif
) {
if (dig == '9')
goto round_9_up;
if (j > 0)
dig++;
#ifdef SET_INEXACT
else if (!b->x[0] && b->wds <= 1)
inexact = 0;
#endif
*s++ = dig;
goto ret;
}
#endif
if (j < 0 || (j == 0 && mode != 1
#ifndef ROUND_BIASED
&& !(word1(&u) & 1)
#endif
)) {
if (!b->x[0] && b->wds <= 1) {
#ifdef SET_INEXACT
inexact = 0;
#endif
goto accept_dig;
}
#ifdef Honor_FLT_ROUNDS
if (mode > 1)
switch(Rounding) {
case 0: goto accept_dig;
case 2: goto keep_dig;
}
#endif /*Honor_FLT_ROUNDS*/
if (j1 > 0) {
b = lshift(b, 1);
j1 = cmp(b, S);
#ifdef ROUND_BIASED
if (j1 >= 0 /*)*/
#else
if ((j1 > 0 || (j1 == 0 && dig & 1))
#endif
&& dig++ == '9')
goto round_9_up;
}
accept_dig:
*s++ = dig;
goto ret;
}
if (j1 > 0) {
#ifdef Honor_FLT_ROUNDS
if (!Rounding)
goto accept_dig;
#endif
if (dig == '9') { /* possible if i == 1 */
round_9_up:
*s++ = '9';
goto roundoff;
}
*s++ = dig + 1;
goto ret;
}
#ifdef Honor_FLT_ROUNDS
keep_dig:
#endif
*s++ = dig;
if (i == ilim)
break;
b = multadd(b, 10, 0);
if (mlo == mhi)
mlo = mhi = multadd(mhi, 10, 0);
else {
mlo = multadd(mlo, 10, 0);
mhi = multadd(mhi, 10, 0);
}
}
}
else
for(i = 1;; i++) {
*s++ = dig = quorem(b,S) + '0';
if (!b->x[0] && b->wds <= 1) {
#ifdef SET_INEXACT
inexact = 0;
#endif
goto ret;
}
if (i >= ilim)
break;
b = multadd(b, 10, 0);
}
/* Round off last digit */
#ifdef Honor_FLT_ROUNDS
switch(Rounding) {
case 0: goto trimzeros;
case 2: goto roundoff;
}
#endif
b = lshift(b, 1);
j = cmp(b, S);
#ifdef ROUND_BIASED
if (j >= 0)
#else
if (j > 0 || (j == 0 && dig & 1))
#endif
{
roundoff:
while(*--s == '9')
if (s == s0) {
k++;
*s++ = '1';
goto ret;
}
++*s++;
}
else {
#ifdef Honor_FLT_ROUNDS
trimzeros:
#endif
while(*--s == '0');
s++;
}
ret:
Bfree(S);
if (mhi) {
if (mlo && mlo != mhi)
Bfree(mlo);
Bfree(mhi);
}
ret1:
#ifdef SET_INEXACT
if (inexact) {
if (!oldinexact) {
word0(&u) = Exp_1 + (70 << Exp_shift);
word1(&u) = 0;
dval(&u) += 1.;
}
}
else if (!oldinexact)
clear_inexact();
#endif
Bfree(b);
*s = 0;
*decpt = k + 1;
if (rve)
*rve = s;
return s0;
}
#ifdef __cplusplus
}
#endif
#endif
#ifndef _DTOA_CONFIG_H
#define _DTOA_CONFIG_H
#if 0
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
/* Ensure dtoa.c does not USE_LOCALE. Lua CJSON must not use locale
* aware conversion routines. */
#undef USE_LOCALE
/* dtoa.c should not touch errno, Lua CJSON does not use it, and it
* may not be threadsafe */
#define NO_ERRNO
#define Long int32_t
#define ULong uint32_t
#define Llong int64_t
#define ULLong uint64_t
#ifdef IEEE_BIG_ENDIAN
#define IEEE_MC68k
#else
#define IEEE_8087
#endif
#define MALLOC(n) xmalloc(n)
static void *xmalloc(size_t size)
{
void *p;
p = malloc(size);
if (!p) {
fprintf(stderr, "Out of memory");
abort();
}
return p;
}
#ifdef MULTIPLE_THREADS
/* Enable locking to support multi-threaded applications */
#include <pthread.h>
static pthread_mutex_t private_dtoa_lock[2] = {
PTHREAD_MUTEX_INITIALIZER,
PTHREAD_MUTEX_INITIALIZER
};
#define ACQUIRE_DTOA_LOCK(n) do { \
int r = pthread_mutex_lock(&private_dtoa_lock[n]); \
if (r) { \
fprintf(stderr, "pthread_mutex_lock failed with %d\n", r); \
abort(); \
} \
} while (0)
#define FREE_DTOA_LOCK(n) do { \
int r = pthread_mutex_unlock(&private_dtoa_lock[n]); \
if (r) { \
fprintf(stderr, "pthread_mutex_unlock failed with %d\n", r);\
abort(); \
} \
} while (0)
#endif /* MULTIPLE_THREADS */
#endif
#endif /* _DTOA_CONFIG_H */
/* vi:ai et sw=4 ts=4:
*/
/* fpconv - Floating point conversion routines
*
* Copyright (c) 2011-2012 Mark Pulford <mark@kyne.com.au>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/* JSON uses a '.' decimal separator. strtod() / sprintf() under C libraries
* with locale support will break when the decimal separator is a comma.
*
* fpconv_* will around these issues with a translation buffer if required.
*/
#include "c_stdio.h"
#include "c_stdlib.h"
// #include <assert.h>
#include "c_string.h"
#include "fpconv.h"
/* Lua CJSON assumes the locale is the same for all threads within a
* process and doesn't change after initialisation.
*
* This avoids the need for per thread storage or expensive checks
* for call. */
static char locale_decimal_point = '.';
/* In theory multibyte decimal_points are possible, but
* Lua CJSON only supports UTF-8 and known locales only have
* single byte decimal points ([.,]).
*
* localconv() may not be thread safe (=>crash), and nl_langinfo() is
* not supported on some platforms. Use sprintf() instead - if the
* locale does change, at least Lua CJSON won't crash. */
static void fpconv_update_locale()
{
char buf[8];
c_sprintf(buf, "%g", 0.5);
/* Failing this test might imply the platform has a buggy dtoa
* implementation or wide characters */
if (buf[0] != '0' || buf[2] != '5' || buf[3] != 0) {
NODE_ERR("Error: wide characters found or printf() bug.");
return;
}
locale_decimal_point = buf[1];
}
/* Check for a valid number character: [-+0-9a-yA-Y.]
* Eg: -0.6e+5, infinity, 0xF0.F0pF0
*
* Used to find the probable end of a number. It doesn't matter if
* invalid characters are counted - strtod() will find the valid
* number if it exists. The risk is that slightly more memory might
* be allocated before a parse error occurs. */
static inline int valid_number_character(char ch)
{
char lower_ch;
if ('0' <= ch && ch <= '9')
return 1;
if (ch == '-' || ch == '+' || ch == '.')
return 1;
/* Hex digits, exponent (e), base (p), "infinity",.. */
lower_ch = ch | 0x20;
if ('a' <= lower_ch && lower_ch <= 'y')
return 1;
return 0;
}
/* Calculate the size of the buffer required for a strtod locale
* conversion. */
static int strtod_buffer_size(const char *s)
{
const char *p = s;
while (valid_number_character(*p))
p++;
return p - s;
}
/* Similar to strtod(), but must be passed the current locale's decimal point
* character. Guaranteed to be called at the start of any valid number in a string */
double fpconv_strtod(const char *nptr, char **endptr)
{
char localbuf[FPCONV_G_FMT_BUFSIZE];
char *buf, *endbuf, *dp;
int buflen;
double value;
/* System strtod() is fine when decimal point is '.' */
if (locale_decimal_point == '.')
return c_strtod(nptr, endptr);
buflen = strtod_buffer_size(nptr);
if (!buflen) {
/* No valid characters found, standard strtod() return */
*endptr = (char *)nptr;
return 0;
}
/* Duplicate number into buffer */
if (buflen >= FPCONV_G_FMT_BUFSIZE) {
/* Handle unusually large numbers */
buf = c_malloc(buflen + 1);
if (!buf) {
NODE_ERR("not enough memory\n");
return;
}
} else {
/* This is the common case.. */
buf = localbuf;
}
c_memcpy(buf, nptr, buflen);
buf[buflen] = 0;
/* Update decimal point character if found */
dp = c_strchr(buf, '.');
if (dp)
*dp = locale_decimal_point;
value = c_strtod(buf, &endbuf);
*endptr = (char *)&nptr[endbuf - buf];
if (buflen >= FPCONV_G_FMT_BUFSIZE)
c_free(buf);
return value;
}
/* "fmt" must point to a buffer of at least 6 characters */
static void set_number_format(char *fmt, int precision)
{
int d1, d2, i;
if(!(1 <= precision && precision <= 14)) return;
/* Create printf format (%.14g) from precision */
d1 = precision / 10;
d2 = precision % 10;
fmt[0] = '%';
fmt[1] = '.';
i = 2;
if (d1) {
fmt[i++] = '0' + d1;
}
fmt[i++] = '0' + d2;
fmt[i++] = 'g';
fmt[i] = 0;
}
/* Assumes there is always at least 32 characters available in the target buffer */
int fpconv_g_fmt(char *str, double num, int precision)
{
char buf[FPCONV_G_FMT_BUFSIZE];
char fmt[6];
int len;
char *b;
set_number_format(fmt, precision);
/* Pass through when decimal point character is dot. */
if (locale_decimal_point == '.'){
c_sprintf(str, fmt, num);
return c_strlen(str);
}
/* snprintf() to a buffer then translate for other decimal point characters */
c_sprintf(buf, fmt, num);
len = c_strlen(buf);
/* Copy into target location. Translate decimal point if required */
b = buf;
do {
*str++ = (*b == locale_decimal_point ? '.' : *b);
} while(*b++);
return len;
}
void fpconv_init()
{
fpconv_update_locale();
}
/* vi:ai et sw=4 ts=4:
*/
/* Lua CJSON floating point conversion routines */
/* Buffer required to store the largest string representation of a double.
*
* Longest double printed with %.14g is 21 characters long:
* -1.7976931348623e+308 */
# define FPCONV_G_FMT_BUFSIZE 32
#ifdef USE_INTERNAL_FPCONV
static inline void fpconv_init()
{
/* Do nothing - not required */
}
#else
extern inline void fpconv_init();
#endif
extern int fpconv_g_fmt(char*, double, int);
extern double fpconv_strtod(const char*, char**);
/* vi:ai et sw=4 ts=4:
*/
/****************************************************************
*
* The author of this software is David M. Gay.
*
* Copyright (c) 1991, 1996 by Lucent Technologies.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose without fee is hereby granted, provided that this entire notice
* is included in all copies of any software which is or includes a copy
* or modification of this software and in all copies of the supporting
* documentation for such software.
*
* THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY
* REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
* OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
*
***************************************************************/
/* g_fmt(buf,x) stores the closest decimal approximation to x in buf;
* it suffices to declare buf
* char buf[32];
*/
#if 0
#ifdef __cplusplus
extern "C" {
#endif
extern char *dtoa(double, int, int, int *, int *, char **);
extern int g_fmt(char *, double, int);
extern void freedtoa(char*);
#ifdef __cplusplus
}
#endif
int
fpconv_g_fmt(char *b, double x, int precision)
{
register int i, k;
register char *s;
int decpt, j, sign;
char *b0, *s0, *se;
b0 = b;
#ifdef IGNORE_ZERO_SIGN
if (!x) {
*b++ = '0';
*b = 0;
goto done;
}
#endif
s = s0 = dtoa(x, 2, precision, &decpt, &sign, &se);
if (sign)
*b++ = '-';
if (decpt == 9999) /* Infinity or Nan */ {
while((*b++ = *s++));
/* "b" is used to calculate the return length. Decrement to exclude the
* Null terminator from the length */
b--;
goto done0;
}
if (decpt <= -4 || decpt > precision) {
*b++ = *s++;
if (*s) {
*b++ = '.';
while((*b = *s++))
b++;
}
*b++ = 'e';
/* sprintf(b, "%+.2d", decpt - 1); */
if (--decpt < 0) {
*b++ = '-';
decpt = -decpt;
}
else
*b++ = '+';
for(j = 2, k = 10; 10*k <= decpt; j++, k *= 10);
for(;;) {
i = decpt / k;
*b++ = i + '0';
if (--j <= 0)
break;
decpt -= i*k;
decpt *= 10;
}
*b = 0;
}
else if (decpt <= 0) {
*b++ = '0';
*b++ = '.';
for(; decpt < 0; decpt++)
*b++ = '0';
while((*b++ = *s++));
b--;
}
else {
while((*b = *s++)) {
b++;
if (--decpt == 0 && *s)
*b++ = '.';
}
for(; decpt > 0; decpt--)
*b++ = '0';
*b = 0;
}
done0:
freedtoa(s0);
#ifdef IGNORE_ZERO_SIGN
done:
#endif
return b - b0;
}
#endif
local json = require "cjson"
-- Various common routines used by the Lua CJSON package
--
-- Mark Pulford <mark@kyne.com.au>
-- Determine with a Lua table can be treated as an array.
-- Explicitly returns "not an array" for very sparse arrays.
-- Returns:
-- -1 Not an array
-- 0 Empty table
-- >0 Highest index in the array
local function is_array(table)
local max = 0
local count = 0
for k, v in pairs(table) do
if type(k) == "number" then
if k > max then max = k end
count = count + 1
else
return -1
end
end
if max > count * 2 then
return -1
end
return max
end
local serialise_value
local function serialise_table(value, indent, depth)
local spacing, spacing2, indent2
if indent then
spacing = "\n" .. indent
spacing2 = spacing .. " "
indent2 = indent .. " "
else
spacing, spacing2, indent2 = " ", " ", false
end
depth = depth + 1
if depth > 50 then
return "Cannot serialise any further: too many nested tables"
end
local max = is_array(value)
local comma = false
local fragment = { "{" .. spacing2 }
if max > 0 then
-- Serialise array
for i = 1, max do
if comma then
table.insert(fragment, "," .. spacing2)
end
table.insert(fragment, serialise_value(value[i], indent2, depth))
comma = true
end
elseif max < 0 then
-- Serialise table
for k, v in pairs(value) do
if comma then
table.insert(fragment, "," .. spacing2)
end
table.insert(fragment,
("[%s] = %s"):format(serialise_value(k, indent2, depth),
serialise_value(v, indent2, depth)))
comma = true
end
end
table.insert(fragment, spacing .. "}")
return table.concat(fragment)
end
function serialise_value(value, indent, depth)
if indent == nil then indent = "" end
if depth == nil then depth = 0 end
if value == json.null then
return "json.null"
elseif type(value) == "string" then
return ("%q"):format(value)
elseif type(value) == "nil" or type(value) == "number" or
type(value) == "boolean" then
return tostring(value)
elseif type(value) == "table" then
return serialise_table(value, indent, depth)
else
return "\"<" .. type(value) .. ">\""
end
end
local function file_load(filename)
local file
if filename == nil then
file = io.stdin
else
local err
file, err = io.open(filename, "rb")
if file == nil then
error(("Unable to read '%s': %s"):format(filename, err))
end
end
local data = file:read("*a")
if filename ~= nil then
file:close()
end
if data == nil then
error("Failed to read " .. filename)
end
return data
end
local function file_save(filename, data)
local file
if filename == nil then
file = io.stdout
else
local err
file, err = io.open(filename, "wb")
if file == nil then
error(("Unable to write '%s': %s"):format(filename, err))
end
end
file:write(data)
if filename ~= nil then
file:close()
end
end
local function compare_values(val1, val2)
local type1 = type(val1)
local type2 = type(val2)
if type1 ~= type2 then
return false
end
-- Check for NaN
if type1 == "number" and val1 ~= val1 and val2 ~= val2 then
return true
end
if type1 ~= "table" then
return val1 == val2
end
-- check_keys stores all the keys that must be checked in val2
local check_keys = {}
for k, _ in pairs(val1) do
check_keys[k] = true
end
for k, v in pairs(val2) do
if not check_keys[k] then
return false
end
if not compare_values(val1[k], val2[k]) then
return false
end
check_keys[k] = nil
end
for k, _ in pairs(check_keys) do
-- Not the same if any keys from val1 were not found in val2
return false
end
return true
end
local test_count_pass = 0
local test_count_total = 0
local function run_test_summary()
return test_count_pass, test_count_total
end
local function run_test(testname, func, input, should_work, output)
local function status_line(name, status, value)
local statusmap = { [true] = ":success", [false] = ":error" }
if status ~= nil then
name = name .. statusmap[status]
end
print(("[%s] %s"):format(name, serialise_value(value, false)))
end
local result = { pcall(func, unpack(input)) }
local success = table.remove(result, 1)
local correct = false
if success == should_work and compare_values(result, output) then
correct = true
test_count_pass = test_count_pass + 1
end
test_count_total = test_count_total + 1
local teststatus = { [true] = "PASS", [false] = "FAIL" }
print(("==> Test [%d] %s: %s"):format(test_count_total, testname,
teststatus[correct]))
status_line("Input", nil, input)
if not correct then
status_line("Expected", should_work, output)
end
status_line("Received", success, result)
print()
return correct, result
end
local function run_test_group(tests)
local function run_helper(name, func, input)
if type(name) == "string" and #name > 0 then
print("==> " .. name)
end
-- Not a protected call, these functions should never generate errors.
func(unpack(input or {}))
print()
end
for _, v in ipairs(tests) do
-- Run the helper if "should_work" is missing
if v[4] == nil then
run_helper(unpack(v))
else
run_test(unpack(v))
end
end
end
-- Run a Lua script in a separate environment
local function run_script(script, env)
local env = env or {}
local func
-- Use setfenv() if it exists, otherwise assume Lua 5.2 load() exists
if _G.setfenv then
func = loadstring(script)
if func then
setfenv(func, env)
end
else
func = load(script, nil, nil, env)
end
if func == nil then
error("Invalid syntax.")
end
func()
return env
end
-- Export functions
return {
serialise_value = serialise_value,
file_load = file_load,
file_save = file_save,
compare_values = compare_values,
run_test_summary = run_test_summary,
run_test = run_test,
run_test_group = run_test_group,
run_script = run_script
}
-- vi:ai et sw=4 ts=4:
#!/usr/bin/env lua
-- usage: json2lua.lua [json_file]
--
-- Eg:
-- echo '[ "testing" ]' | ./json2lua.lua
-- ./json2lua.lua test.json
local json = require "cjson"
local util = require "cjson.util"
local json_text = util.file_load(arg[1])
local t = json.decode(json_text)
print(util.serialise_value(t))
#!/usr/bin/env lua
-- usage: lua2json.lua [lua_file]
--
-- Eg:
-- echo '{ "testing" }' | ./lua2json.lua
-- ./lua2json.lua test.lua
local json = require "cjson"
local util = require "cjson.util"
local env = {
json = { null = json.null },
null = json.null
}
local t = util.run_script("data = " .. util.file_load(arg[1]), env)
print(json.encode(t.data))
-- vi:ai et sw=4 ts=4:
= Lua CJSON 2.1devel Manual =
Mark Pulford <mark@kyne.com.au>
:revdate: 1st March 2012
Overview
--------
The Lua CJSON module provides JSON support for Lua.
*Features*::
- Fast, standards compliant encoding/parsing routines
- Full support for JSON with UTF-8, including decoding surrogate pairs
- Optional run-time support for common exceptions to the JSON
specification (infinity, NaN,..)
- No dependencies on other libraries
*Caveats*::
- UTF-16 and UTF-32 are not supported
Lua CJSON is covered by the MIT license. Review the file +LICENSE+ for
details.
API (Functions)
---------------
Synopsis
~~~~~~~~
[source,lua]
------------
-- Translate Lua value to/from JSON
text = cjson.encode(value)
value = cjson.decode(text)
Module Instantiation
~~~~~~~~~~~~~~~~~~~~
decode
~~~~~~
[source,lua]
------------
value = cjson.decode(json_text)
------------
+cjson.decode+ will deserialise any UTF-8 JSON string into a Lua value
or table.
UTF-16 and UTF-32 JSON strings are not supported.
+cjson.decode+ requires that any NULL (ASCII 0) and double quote (ASCII
34) characters are escaped within strings. All escape codes will be
decoded and other bytes will be passed transparently. UTF-8 characters
are not validated during decoding and should be checked elsewhere if
required.
JSON +null+ will be converted to a NULL +lightuserdata+ value. This can
be compared with +cjson.null+ for convenience.
By default, numbers incompatible with the JSON specification (infinity,
NaN, hexadecimal) can be decoded. This default can be changed with
<<decode_invalid_numbers,+cjson.decode_invalid_numbers+>>.
.Example: Decoding
[source,lua]
json_text = '[ true, { "foo": "bar" } ]'
value = cjson.decode(json_text)
-- Returns: { true, { foo = "bar" } }
[CAUTION]
Care must be taken after decoding JSON objects with numeric keys. Each
numeric key will be stored as a Lua +string+. Any subsequent code
assuming type +number+ may break.
[[encode]]
encode
~~~~~~
[source,lua]
------------
json_text = cjson.encode(value)
------------
+cjson.encode+ will serialise a Lua value into a string containing the
JSON representation.
+cjson.encode+ supports the following types:
- +boolean+
- +lightuserdata+ (NULL value only)
- +nil+
- +number+
- +string+
- +table+
The remaining Lua types will generate an error:
- +function+
- +lightuserdata+ (non-NULL values)
- +thread+
- +userdata+
By default, numbers are encoded with 14 significant digits. Refer to
<<encode_number_precision,+cjson.encode_number_precision+>> for details.
Lua CJSON will escape the following characters within each UTF-8 string:
- Control characters (ASCII 0 - 31)
- Double quote (ASCII 34)
- Forward slash (ASCII 47)
- Blackslash (ASCII 92)
- Delete (ASCII 127)
All other bytes are passed transparently.
[CAUTION]
=========
Lua CJSON will successfully encode/decode binary strings, but this is
technically not supported by JSON and may not be compatible with other
JSON libraries. To ensure the output is valid JSON, applications should
ensure all Lua strings passed to +cjson.encode+ are UTF-8.
Base64 is commonly used to encode binary data as the most efficient
encoding under UTF-8 can only reduce the encoded size by a further
&#126;8%. Lua Base64 routines can be found in the
http://w3.impa.br/%7Ediego/software/luasocket/[LuaSocket] and
http://www.tecgraf.puc-rio.br/%7Elhf/ftp/lua/#lbase64[lbase64] packages.
=========
Lua CJSON uses a heuristic to determine whether to encode a Lua table as
a JSON array or an object. A Lua table with only positive integer keys
of type +number+ will be encoded as a JSON array. All other tables will
be encoded as a JSON object.
Lua CJSON does not use metamethods when serialising tables.
- +rawget+ is used to iterate over Lua arrays
- +next+ is used to iterate over Lua objects
Lua arrays with missing entries (_sparse arrays_) may optionally be
encoded in several different ways. Refer to
<<encode_sparse_array,+cjson.encode_sparse_array+>> for details.
JSON object keys are always strings. Hence +cjson.encode+ only supports
table keys which are type +number+ or +string+. All other types will
generate an error.
[NOTE]
Standards compliant JSON must be encapsulated in either an object (+{}+)
or an array (+[]+). If strictly standards compliant JSON is desired, a
table must be passed to +cjson.encode+.
By default, encoding the following Lua values will generate errors:
- Numbers incompatible with the JSON specification (infinity, NaN)
- Tables nested more than 1000 levels deep
- Excessively sparse Lua arrays
.Example: Encoding
[source,lua]
value = { true, { foo = "bar" } }
json_text = cjson.encode(value)
-- Returns: '[true,{"foo":"bar"}]'
// vi:ft=asciidoc tw=72:
Network Working Group D. Crockford
Request for Comments: 4627 JSON.org
Category: Informational July 2006
The application/json Media Type for JavaScript Object Notation (JSON)
Status of This Memo
This memo provides information for the Internet community. It does
not specify an Internet standard of any kind. Distribution of this
memo is unlimited.
Copyright Notice
Copyright (C) The Internet Society (2006).
Abstract
JavaScript Object Notation (JSON) is a lightweight, text-based,
language-independent data interchange format. It was derived from
the ECMAScript Programming Language Standard. JSON defines a small
set of formatting rules for the portable representation of structured
data.
1. Introduction
JavaScript Object Notation (JSON) is a text format for the
serialization of structured data. It is derived from the object
literals of JavaScript, as defined in the ECMAScript Programming
Language Standard, Third Edition [ECMA].
JSON can represent four primitive types (strings, numbers, booleans,
and null) and two structured types (objects and arrays).
A string is a sequence of zero or more Unicode characters [UNICODE].
An object is an unordered collection of zero or more name/value
pairs, where a name is a string and a value is a string, number,
boolean, null, object, or array.
An array is an ordered sequence of zero or more values.
The terms "object" and "array" come from the conventions of
JavaScript.
JSON's design goals were for it to be minimal, portable, textual, and
a subset of JavaScript.
Crockford Informational [Page 1]
RFC 4627 JSON July 2006
1.1. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
The grammatical rules in this document are to be interpreted as
described in [RFC4234].
2. JSON Grammar
A JSON text is a sequence of tokens. The set of tokens includes six
structural characters, strings, numbers, and three literal names.
A JSON text is a serialized object or array.
JSON-text = object / array
These are the six structural characters:
begin-array = ws %x5B ws ; [ left square bracket
begin-object = ws %x7B ws ; { left curly bracket
end-array = ws %x5D ws ; ] right square bracket
end-object = ws %x7D ws ; } right curly bracket
name-separator = ws %x3A ws ; : colon
value-separator = ws %x2C ws ; , comma
Insignificant whitespace is allowed before or after any of the six
structural characters.
ws = *(
%x20 / ; Space
%x09 / ; Horizontal tab
%x0A / ; Line feed or New line
%x0D ; Carriage return
)
2.1. Values
A JSON value MUST be an object, array, number, or string, or one of
the following three literal names:
false null true
Crockford Informational [Page 2]
RFC 4627 JSON July 2006
The literal names MUST be lowercase. No other literal names are
allowed.
value = false / null / true / object / array / number / string
false = %x66.61.6c.73.65 ; false
null = %x6e.75.6c.6c ; null
true = %x74.72.75.65 ; true
2.2. Objects
An object structure is represented as a pair of curly brackets
surrounding zero or more name/value pairs (or members). A name is a
string. A single colon comes after each name, separating the name
from the value. A single comma separates a value from a following
name. The names within an object SHOULD be unique.
object = begin-object [ member *( value-separator member ) ]
end-object
member = string name-separator value
2.3. Arrays
An array structure is represented as square brackets surrounding zero
or more values (or elements). Elements are separated by commas.
array = begin-array [ value *( value-separator value ) ] end-array
2.4. Numbers
The representation of numbers is similar to that used in most
programming languages. A number contains an integer component that
may be prefixed with an optional minus sign, which may be followed by
a fraction part and/or an exponent part.
Octal and hex forms are not allowed. Leading zeros are not allowed.
A fraction part is a decimal point followed by one or more digits.
An exponent part begins with the letter E in upper or lowercase,
which may be followed by a plus or minus sign. The E and optional
sign are followed by one or more digits.
Numeric values that cannot be represented as sequences of digits
(such as Infinity and NaN) are not permitted.
Crockford Informational [Page 3]
RFC 4627 JSON July 2006
number = [ minus ] int [ frac ] [ exp ]
decimal-point = %x2E ; .
digit1-9 = %x31-39 ; 1-9
e = %x65 / %x45 ; e E
exp = e [ minus / plus ] 1*DIGIT
frac = decimal-point 1*DIGIT
int = zero / ( digit1-9 *DIGIT )
minus = %x2D ; -
plus = %x2B ; +
zero = %x30 ; 0
2.5. Strings
The representation of strings is similar to conventions used in the C
family of programming languages. A string begins and ends with
quotation marks. All Unicode characters may be placed within the
quotation marks except for the characters that must be escaped:
quotation mark, reverse solidus, and the control characters (U+0000
through U+001F).
Any character may be escaped. If the character is in the Basic
Multilingual Plane (U+0000 through U+FFFF), then it may be
represented as a six-character sequence: a reverse solidus, followed
by the lowercase letter u, followed by four hexadecimal digits that
encode the character's code point. The hexadecimal letters A though
F can be upper or lowercase. So, for example, a string containing
only a single reverse solidus character may be represented as
"\u005C".
Alternatively, there are two-character sequence escape
representations of some popular characters. So, for example, a
string containing only a single reverse solidus character may be
represented more compactly as "\\".
To escape an extended character that is not in the Basic Multilingual
Plane, the character is represented as a twelve-character sequence,
encoding the UTF-16 surrogate pair. So, for example, a string
containing only the G clef character (U+1D11E) may be represented as
"\uD834\uDD1E".
Crockford Informational [Page 4]
RFC 4627 JSON July 2006
string = quotation-mark *char quotation-mark
char = unescaped /
escape (
%x22 / ; " quotation mark U+0022
%x5C / ; \ reverse solidus U+005C
%x2F / ; / solidus U+002F
%x62 / ; b backspace U+0008
%x66 / ; f form feed U+000C
%x6E / ; n line feed U+000A
%x72 / ; r carriage return U+000D
%x74 / ; t tab U+0009
%x75 4HEXDIG ) ; uXXXX U+XXXX
escape = %x5C ; \
quotation-mark = %x22 ; "
unescaped = %x20-21 / %x23-5B / %x5D-10FFFF
3. Encoding
JSON text SHALL be encoded in Unicode. The default encoding is
UTF-8.
Since the first two characters of a JSON text will always be ASCII
characters [RFC0020], it is possible to determine whether an octet
stream is UTF-8, UTF-16 (BE or LE), or UTF-32 (BE or LE) by looking
at the pattern of nulls in the first four octets.
00 00 00 xx UTF-32BE
00 xx 00 xx UTF-16BE
xx 00 00 00 UTF-32LE
xx 00 xx 00 UTF-16LE
xx xx xx xx UTF-8
4. Parsers
A JSON parser transforms a JSON text into another representation. A
JSON parser MUST accept all texts that conform to the JSON grammar.
A JSON parser MAY accept non-JSON forms or extensions.
An implementation may set limits on the size of texts that it
accepts. An implementation may set limits on the maximum depth of
nesting. An implementation may set limits on the range of numbers.
An implementation may set limits on the length and character contents
of strings.
Crockford Informational [Page 5]
RFC 4627 JSON July 2006
5. Generators
A JSON generator produces JSON text. The resulting text MUST
strictly conform to the JSON grammar.
6. IANA Considerations
The MIME media type for JSON text is application/json.
Type name: application
Subtype name: json
Required parameters: n/a
Optional parameters: n/a
Encoding considerations: 8bit if UTF-8; binary if UTF-16 or UTF-32
JSON may be represented using UTF-8, UTF-16, or UTF-32. When JSON
is written in UTF-8, JSON is 8bit compatible. When JSON is
written in UTF-16 or UTF-32, the binary content-transfer-encoding
must be used.
Security considerations:
Generally there are security issues with scripting languages. JSON
is a subset of JavaScript, but it is a safe subset that excludes
assignment and invocation.
A JSON text can be safely passed into JavaScript's eval() function
(which compiles and executes a string) if all the characters not
enclosed in strings are in the set of characters that form JSON
tokens. This can be quickly determined in JavaScript with two
regular expressions and calls to the test and replace methods.
var my_JSON_object = !(/[^,:{}\[\]0-9.\-+Eaeflnr-u \n\r\t]/.test(
text.replace(/"(\\.|[^"\\])*"/g, ''))) &&
eval('(' + text + ')');
Interoperability considerations: n/a
Published specification: RFC 4627
Crockford Informational [Page 6]
RFC 4627 JSON July 2006
Applications that use this media type:
JSON has been used to exchange data between applications written
in all of these programming languages: ActionScript, C, C#,
ColdFusion, Common Lisp, E, Erlang, Java, JavaScript, Lua,
Objective CAML, Perl, PHP, Python, Rebol, Ruby, and Scheme.
Additional information:
Magic number(s): n/a
File extension(s): .json
Macintosh file type code(s): TEXT
Person & email address to contact for further information:
Douglas Crockford
douglas@crockford.com
Intended usage: COMMON
Restrictions on usage: none
Author:
Douglas Crockford
douglas@crockford.com
Change controller:
Douglas Crockford
douglas@crockford.com
7. Security Considerations
See Security Considerations in Section 6.
8. Examples
This is a JSON object:
{
"Image": {
"Width": 800,
"Height": 600,
"Title": "View from 15th Floor",
"Thumbnail": {
"Url": "http://www.example.com/image/481989943",
"Height": 125,
"Width": "100"
},
"IDs": [116, 943, 234, 38793]
Crockford Informational [Page 7]
RFC 4627 JSON July 2006
}
}
Its Image member is an object whose Thumbnail member is an object
and whose IDs member is an array of numbers.
This is a JSON array containing two objects:
[
{
"precision": "zip",
"Latitude": 37.7668,
"Longitude": -122.3959,
"Address": "",
"City": "SAN FRANCISCO",
"State": "CA",
"Zip": "94107",
"Country": "US"
},
{
"precision": "zip",
"Latitude": 37.371991,
"Longitude": -122.026020,
"Address": "",
"City": "SUNNYVALE",
"State": "CA",
"Zip": "94085",
"Country": "US"
}
]
9. References
9.1. Normative References
[ECMA] European Computer Manufacturers Association, "ECMAScript
Language Specification 3rd Edition", December 1999,
<http://www.ecma-international.org/publications/files/
ecma-st/ECMA-262.pdf>.
[RFC0020] Cerf, V., "ASCII format for network interchange", RFC 20,
October 1969.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4234] Crocker, D. and P. Overell, "Augmented BNF for Syntax
Specifications: ABNF", RFC 4234, October 2005.
Crockford Informational [Page 8]
RFC 4627 JSON July 2006
[UNICODE] The Unicode Consortium, "The Unicode Standard Version 4.0",
2003, <http://www.unicode.org/versions/Unicode4.1.0/>.
Author's Address
Douglas Crockford
JSON.org
EMail: douglas@crockford.com
Crockford Informational [Page 9]
RFC 4627 JSON July 2006
Full Copyright Statement
Copyright (C) The Internet Society (2006).
This document is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.
This document and the information contained herein are provided on an
"AS IS" basis and THE CONTRIBUTOR, THE ORGANIZATION HE/SHE REPRESENTS
OR IS SPONSORED BY (IF ANY), THE INTERNET SOCIETY AND THE INTERNET
ENGINEERING TASK FORCE DISCLAIM ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE
INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
Intellectual Property
The IETF takes no position regarding the validity or scope of any
Intellectual Property Rights or other rights that might be claimed to
pertain to the implementation or use of the technology described in
this document or the extent to which any license under such rights
might or might not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC documents can be
found in BCP 78 and BCP 79.
Copies of IPR disclosures made to the IETF Secretariat and any
assurances of licenses to be made available, or the result of an
attempt made to obtain a general license or permission for the use of
such proprietary rights by implementers or users of this
specification can be obtained from the IETF on-line IPR repository at
http://www.ietf.org/ipr.
The IETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to implement
this standard. Please address the information to the IETF at
ietf-ipr@ietf.org.
Acknowledgement
Funding for the RFC Editor function is provided by the IETF
Administrative Support Activity (IASA).
Crockford Informational [Page 10]
/* strbuf - String buffer routines
*
* Copyright (c) 2010-2012 Mark Pulford <mark@kyne.com.au>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "c_stdio.h"
#include "c_stdlib.h"
#include "c_stdarg.h"
#include "c_string.h"
#include "strbuf.h"
int strbuf_init(strbuf_t *s, int len)
{
int size;
if (len <= 0)
size = STRBUF_DEFAULT_SIZE;
else
size = len + 1; /* \0 terminator */
s->buf = NULL;
s->size = size;
s->length = 0;
s->increment = STRBUF_DEFAULT_INCREMENT;
s->dynamic = 0;
s->reallocs = 0;
s->debug = 0;
s->buf = c_malloc(size);
if (!s->buf){
NODE_ERR("not enough memory\n");
return -1;
}
strbuf_ensure_null(s);
return 0;
}
strbuf_t *strbuf_new(int len)
{
strbuf_t *s;
s = c_malloc(sizeof(strbuf_t));
if (!s){
NODE_ERR("not enough memory\n");
return NULL;
}
strbuf_init(s, len);
/* Dynamic strbuf allocation / deallocation */
s->dynamic = 1;
return s;
}
int strbuf_set_increment(strbuf_t *s, int increment)
{
/* Increment > 0: Linear buffer growth rate
* Increment < -1: Exponential buffer growth rate */
if (increment == 0 || increment == -1){
NODE_ERR("BUG: Invalid string increment");
return -1;
}
s->increment = increment;
return 0;
}
static inline void debug_stats(strbuf_t *s)
{
if (s->debug) {
NODE_ERR("strbuf(%lx) reallocs: %d, length: %d, size: %d\n",
(long)s, s->reallocs, s->length, s->size);
}
}
/* If strbuf_t has not been dynamically allocated, strbuf_free() can
* be called any number of times strbuf_init() */
void strbuf_free(strbuf_t *s)
{
debug_stats(s);
if (s->buf) {
c_free(s->buf);
s->buf = NULL;
}
if (s->dynamic)
c_free(s);
}
char *strbuf_free_to_string(strbuf_t *s, int *len)
{
char *buf;
debug_stats(s);
strbuf_ensure_null(s);
buf = s->buf;
if (len)
*len = s->length;
if (s->dynamic)
c_free(s);
return buf;
}
static int calculate_new_size(strbuf_t *s, int len)
{
int reqsize, newsize;
if (len <= 0){
NODE_ERR("BUG: Invalid strbuf length requested");
return 0;
}
/* Ensure there is room for optional NULL termination */
reqsize = len + 1;
/* If the user has requested to shrink the buffer, do it exactly */
if (s->size > reqsize)
return reqsize;
newsize = s->size;
if (s->increment < 0) {
/* Exponential sizing */
while (newsize < reqsize)
newsize *= -s->increment;
} else {
/* Linear sizing */
newsize = ((newsize + s->increment - 1) / s->increment) * s->increment;
}
return newsize;
}
/* Ensure strbuf can handle a string length bytes long (ignoring NULL
* optional termination). */
int strbuf_resize(strbuf_t *s, int len)
{
int newsize;
newsize = calculate_new_size(s, len);
if (s->debug > 1) {
NODE_ERR("strbuf(%lx) resize: %d => %d\n",
(long)s, s->size, newsize);
}
s->buf = (char *)c_realloc(s->buf, newsize);
if (!s->buf){
NODE_ERR("not enough memory");
return -1;
}
s->size = newsize;
s->reallocs++;
return 0;
}
void strbuf_append_string(strbuf_t *s, const char *str)
{
int space, i;
space = strbuf_empty_length(s);
for (i = 0; str[i]; i++) {
if (space < 1) {
strbuf_resize(s, s->length + 1);
space = strbuf_empty_length(s);
}
s->buf[s->length] = str[i];
s->length++;
space--;
}
}
#if 0
/* strbuf_append_fmt() should only be used when an upper bound
* is known for the output string. */
void strbuf_append_fmt(strbuf_t *s, int len, const char *fmt, ...)
{
va_list arg;
int fmt_len;
strbuf_ensure_empty_length(s, len);
va_start(arg, fmt);
fmt_len = vsnprintf(s->buf + s->length, len, fmt, arg);
va_end(arg);
if (fmt_len < 0)
die("BUG: Unable to convert number"); /* This should never happen.. */
s->length += fmt_len;
}
/* strbuf_append_fmt_retry() can be used when the there is no known
* upper bound for the output string. */
void strbuf_append_fmt_retry(strbuf_t *s, const char *fmt, ...)
{
va_list arg;
int fmt_len, try;
int empty_len;
/* If the first attempt to append fails, resize the buffer appropriately
* and try again */
for (try = 0; ; try++) {
va_start(arg, fmt);
/* Append the new formatted string */
/* fmt_len is the length of the string required, excluding the
* trailing NULL */
empty_len = strbuf_empty_length(s);
/* Add 1 since there is also space to store the terminating NULL. */
fmt_len = vsnprintf(s->buf + s->length, empty_len + 1, fmt, arg);
va_end(arg);
if (fmt_len <= empty_len)
break; /* SUCCESS */
if (try > 0)
die("BUG: length of formatted string changed");
strbuf_resize(s, s->length + fmt_len);
}
s->length += fmt_len;
}
#endif
/* vi:ai et sw=4 ts=4:
*/
/* strbuf - String buffer routines
*
* Copyright (c) 2010-2012 Mark Pulford <mark@kyne.com.au>
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#include "c_stdlib.h"
#include "c_stdarg.h"
/* Size: Total bytes allocated to *buf
* Length: String length, excluding optional NULL terminator.
* Increment: Allocation increments when resizing the string buffer.
* Dynamic: True if created via strbuf_new()
*/
typedef struct {
char *buf;
int size;
int length;
int increment;
int dynamic;
int reallocs;
int debug;
} strbuf_t;
#ifndef STRBUF_DEFAULT_SIZE
#define STRBUF_DEFAULT_SIZE 1023
#endif
#ifndef STRBUF_DEFAULT_INCREMENT
#define STRBUF_DEFAULT_INCREMENT -2
#endif
/* Initialise */
extern strbuf_t *strbuf_new(int len);
extern int strbuf_init(strbuf_t *s, int len);
extern int strbuf_set_increment(strbuf_t *s, int increment);
/* Release */
extern void strbuf_free(strbuf_t *s);
extern char *strbuf_free_to_string(strbuf_t *s, int *len);
/* Management */
extern int strbuf_resize(strbuf_t *s, int len);
static int strbuf_empty_length(strbuf_t *s);
static int strbuf_length(strbuf_t *s);
static char *strbuf_string(strbuf_t *s, int *len);
static void strbuf_ensure_empty_length(strbuf_t *s, int len);
static char *strbuf_empty_ptr(strbuf_t *s);
static void strbuf_extend_length(strbuf_t *s, int len);
/* Update */
extern void strbuf_append_fmt(strbuf_t *s, int len, const char *fmt, ...);
extern void strbuf_append_fmt_retry(strbuf_t *s, const char *format, ...);
static void strbuf_append_mem(strbuf_t *s, const char *c, int len);
extern void strbuf_append_string(strbuf_t *s, const char *str);
static void strbuf_append_char(strbuf_t *s, const char c);
static void strbuf_ensure_null(strbuf_t *s);
/* Reset string for before use */
static inline void strbuf_reset(strbuf_t *s)
{
s->length = 0;
}
static inline int strbuf_allocated(strbuf_t *s)
{
return s->buf != NULL;
}
/* Return bytes remaining in the string buffer
* Ensure there is space for a NULL terminator. */
static inline int strbuf_empty_length(strbuf_t *s)
{
return s->size - s->length - 1;
}
static inline void strbuf_ensure_empty_length(strbuf_t *s, int len)
{
if (len > strbuf_empty_length(s))
strbuf_resize(s, s->length + len);
}
static inline char *strbuf_empty_ptr(strbuf_t *s)
{
return s->buf + s->length;
}
static inline void strbuf_extend_length(strbuf_t *s, int len)
{
s->length += len;
}
static inline int strbuf_length(strbuf_t *s)
{
return s->length;
}
static inline void strbuf_append_char(strbuf_t *s, const char c)
{
strbuf_ensure_empty_length(s, 1);
s->buf[s->length++] = c;
}
static inline void strbuf_append_char_unsafe(strbuf_t *s, const char c)
{
s->buf[s->length++] = c;
}
static inline void strbuf_append_mem(strbuf_t *s, const char *c, int len)
{
strbuf_ensure_empty_length(s, len);
c_memcpy(s->buf + s->length, c, len);
s->length += len;
}
static inline void strbuf_append_mem_unsafe(strbuf_t *s, const char *c, int len)
{
c_memcpy(s->buf + s->length, c, len);
s->length += len;
}
static inline void strbuf_ensure_null(strbuf_t *s)
{
s->buf[s->length] = 0;
}
static inline char *strbuf_string(strbuf_t *s, int *len)
{
if (len)
*len = s->length;
return s->buf;
}
/* vi:ai et sw=4 ts=4:
*/
These JSON examples were taken from the JSON website
(http://json.org/example.html) and RFC 4627.
Used with permission.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment